Martingale solutions to the stochastic thin-film equation in two dimensions

被引:1
|
作者
Sauerbrey, Max [1 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, NL-2628 CD Delft, Netherlands
关键词
Thin-film equation; Noise; alpha-Entropy estimates; Stochastic compactness method; EXISTENCE;
D O I
10.1214/22-AIHP1328
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct solutions to the stochastic thin-film equation with quadratic mobility and Stratonovich gradient noise in the physically relevant dimension d = 2 and allow in particular for solutions with non -full support. The construction relies on a Trotter- Kato time -splitting scheme, which was recently employed in d = 1. The additional analytical challenges due to the higher spatial dimension are overcome using alpha-entropy estimates and corresponding tightness arguments.
引用
收藏
页码:373 / 412
页数:40
相关论文
共 50 条
  • [41] Local strong solutions to a quasilinear degenerate fourth-order thin-film equation
    Christina Lienstromberg
    Stefan Müller
    Nonlinear Differential Equations and Applications NoDEA, 2020, 27
  • [42] Travelling wave solutions for a thin-film equation related to the spin-coating process
    Gnann, M. V.
    Kim, H. J.
    Knuepfer, H.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2018, 29 (03) : 369 - 392
  • [43] Stochastic heat equation and martingale differences
    Wang, Zhi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (04) : 1650 - 1660
  • [44] MARTINGALE AND PATHWISE SOLUTIONS TO THE STOCHASTIC ZAKHAROV-KUZNETSOV EQUATION WITH MULTIPLICATIVE NOISE
    Glatt-Holtz, Nathan
    Temam, Roger
    Wang, Chuntian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (04): : 1047 - 1085
  • [45] On the Boltzmann Equation with Stochastic Kinetic Transport: Global Existence of Renormalized Martingale Solutions
    Punshon-Smith, Samuel
    Smith, Scott
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (02) : 627 - 708
  • [46] On the Boltzmann Equation with Stochastic Kinetic Transport: Global Existence of Renormalized Martingale Solutions
    Samuel Punshon-Smith
    Scott Smith
    Archive for Rational Mechanics and Analysis, 2018, 229 : 627 - 708
  • [47] Lasers solutions for wafer and thin-film annealing
    Paetzel, Rainer
    Turk, Brandon
    Brune, Jan
    Govorkov, Sergei
    Simon, Frank
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 5, NO 10, 2008, 5 (10): : 3215 - +
  • [48] STOCHASTIC-MODEL FOR THIN-FILM GROWTH AND EROSION
    STEARNS, DG
    APPLIED PHYSICS LETTERS, 1993, 62 (15) : 1745 - 1747
  • [49] Fully nonlinear dynamics of stochastic thin-film dewetting
    Nesic, S.
    Cuerno, R.
    Moro, E.
    Kondic, L.
    PHYSICAL REVIEW E, 2015, 92 (06):
  • [50] Martingale solutions for stochastic Euler equations
    Bessaih, H
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1999, 17 (05) : 713 - 725