Martingale solutions to the stochastic thin-film equation in two dimensions

被引:1
|
作者
Sauerbrey, Max [1 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, NL-2628 CD Delft, Netherlands
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2024年 / 60卷 / 01期
关键词
Thin-film equation; Noise; alpha-Entropy estimates; Stochastic compactness method; EXISTENCE;
D O I
10.1214/22-AIHP1328
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct solutions to the stochastic thin-film equation with quadratic mobility and Stratonovich gradient noise in the physically relevant dimension d = 2 and allow in particular for solutions with non -full support. The construction relies on a Trotter- Kato time -splitting scheme, which was recently employed in d = 1. The additional analytical challenges due to the higher spatial dimension are overcome using alpha-entropy estimates and corresponding tightness arguments.
引用
收藏
页码:373 / 412
页数:40
相关论文
共 50 条
  • [31] Martingale solutions for the stochastic nonlinear Schrödinger equation in the energy space
    Zdzisław Brzeźniak
    Fabian Hornung
    Lutz Weis
    Probability Theory and Related Fields, 2019, 174 : 1273 - 1338
  • [32] STATIONARY SOLUTIONS OF LIQUID TWO-LAYER THIN-FILM MODELS
    Jachalski, S.
    Huth, Robert
    Kitavtsev, Georgy
    Peschka, Dirk
    Wagner, Barbara
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2013, 73 (03) : 1183 - 1202
  • [34] The stochastic wave equation in two spatial dimensions
    Dalang, RC
    Frangos, NE
    ANNALS OF PROBABILITY, 1998, 26 (01): : 187 - 212
  • [35] Ostwald ripening in two dimensions: Time dependence of size distributions for thin-film islands
    Madras, G
    McCoy, BJ
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (24) : 5459 - 5466
  • [36] A viscous thin-film equation with a singular diffusion
    Peng, Xiting
    Liang, Bo
    Pang, Min
    Wang, Ying
    BOUNDARY VALUE PROBLEMS, 2016,
  • [37] A viscous thin-film equation with a singular diffusion
    Xiting Peng
    Bo Liang
    Min Pang
    Ying Wang
    Boundary Value Problems, 2016
  • [38] A generalized thin-film equation in multidimensional space
    Boutat, M.
    Hilout, S.
    Rakotoson, J. -E.
    Rakotoson, J. -M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (04) : 1268 - 1286
  • [39] Exact fractional soliton solutions of thin-film ferroelectric material equation by analytical approaches
    Faridi, Waqas Ali
    Abu Bakar, Muhammad
    Akgul, Ali
    Abd El-Rahman, Magda
    Din, Sayed M. El
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 78 : 483 - 497
  • [40] Local strong solutions to a quasilinear degenerate fourth-order thin-film equation
    Lienstromberg, Christina
    Mueller, Stefan
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (02):