On Yau sequence over complete intersection surface singularities of Brieskorn type

被引:0
|
作者
Meng, Fanning [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Primary; 14J17; Secondary; 32S25; MAXIMAL IDEAL CYCLES;
D O I
10.1007/s00229-024-01563-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the Yau sequence concerning the minimal cycle over complete intersection surface singularities of Brieskorn type, and consider the relations between the minimal cycle A and the fundamental cycle Z. Further, we also give the coincidence between the canonical cycles and the fundamental cycles from the Yau sequence concerning the minimal cycle.
引用
收藏
页码:97 / 115
页数:19
相关论文
共 50 条
  • [1] THE MAXIMAL IDEAL CYCLES OVER COMPLETE INTERSECTION SURFACE SINGULARITIES OF BRIESKORN TYPE
    Meng, Fan-Ning
    Okuma, Tomohiro
    KYUSHU JOURNAL OF MATHEMATICS, 2014, 68 (01) : 121 - 137
  • [2] The Minimal Cycles over Brieskorn Complete Intersection Surface Singularities
    Meng, Fanning
    Yuan, Wenjun
    Wang, Zhigang
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (02): : 277 - 286
  • [3] The Minimal Cycles over Isolated Brieskorn Complete Intersection Surface Singularities
    Meng, Fanning
    Lin, Jianming
    Yuan, Wenjun
    Wang, Zhigang
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 223 - 229
  • [4] INTERSECTION MATRIX OF BRIESKORN SINGULARITIES
    HEFEZ, A
    LAZZERI, F
    INVENTIONES MATHEMATICAE, 1974, 25 (02) : 143 - 157
  • [5] MAXIMAL IDEAL CYCLES OVER NORMAL SURFACE SINGULARITIES OF BRIESKORN TYPE
    Konno, Kazuhiro
    Nagashima, Dasuke
    OSAKA JOURNAL OF MATHEMATICS, 2012, 49 (01) : 225 - 245
  • [6] DURFEE-TYPE INEQUALITY FOR COMPLETE INTERSECTION SURFACE SINGULARITIES
    Enokizono, Makoto
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (01) : 1 - 21
  • [7] WEIGHTED HOMOGENEOUS SURFACE SINGULARITIES HOMEOMORPHIC TO BRIESKORN COMPLETE INTERSECTIONS
    Okuma, Tomohiro
    JOURNAL OF SINGULARITIES, 2021, 23 : 170 - 193
  • [8] Normal Reduction Numbers for Normal Surface Singularities with Application to Elliptic Singularities of Brieskorn Type
    Okuma, Tomohiro
    Watanabe, Kei-ichi
    Yoshida, Ken-ichi
    ACTA MATHEMATICA VIETNAMICA, 2019, 44 (01) : 87 - 100
  • [9] Normal Reduction Numbers for Normal Surface Singularities with Application to Elliptic Singularities of Brieskorn Type
    Tomohiro Okuma
    Kei-ichi Watanabe
    Ken-ichi Yoshida
    Acta Mathematica Vietnamica, 2019, 44 : 87 - 100
  • [10] Poisson structures over a complete intersection with isolated singularities
    Fresse, B
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (01) : 5 - 10