Normal Reduction Numbers for Normal Surface Singularities with Application to Elliptic Singularities of Brieskorn Type

被引:0
|
作者
Tomohiro Okuma
Kei-ichi Watanabe
Ken-ichi Yoshida
机构
[1] Yamagata University,Department of Mathematical Sciences, Faculty of Science
[2] Nihon University,Department of Mathematics, College of Humanities and Sciences
来源
关键词
Normal reduction number; Geometric genus; Hypersurface of Brieskorn type; 13B22; Secondary 14B05; 14J17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give a formula for normal reduction number of an integrally closed m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak m$\end{document}-primary ideal of a two-dimensional normal local ring (A,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(A,\mathfrak m)$\end{document} in terms of the geometric genus pg(A) of A. Also, we compute the normal reduction number of the maximal ideal of Brieskorn hypersurfaces. As an application, we give a short proof of a classification of Brieskorn hypersurfaces having elliptic singularities.
引用
收藏
页码:87 / 100
页数:13
相关论文
共 50 条