共 50 条
Normal Reduction Numbers for Normal Surface Singularities with Application to Elliptic Singularities of Brieskorn Type
被引:0
|作者:
Tomohiro Okuma
Kei-ichi Watanabe
Ken-ichi Yoshida
机构:
[1] Yamagata University,Department of Mathematical Sciences, Faculty of Science
[2] Nihon University,Department of Mathematics, College of Humanities and Sciences
来源:
关键词:
Normal reduction number;
Geometric genus;
Hypersurface of Brieskorn type;
13B22;
Secondary 14B05;
14J17;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, we give a formula for normal reduction number of an integrally closed m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathfrak m$\end{document}-primary ideal of a two-dimensional normal local ring (A,m)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(A,\mathfrak m)$\end{document} in terms of the geometric genus pg(A) of A. Also, we compute the normal reduction number of the maximal ideal of Brieskorn hypersurfaces. As an application, we give a short proof of a classification of Brieskorn hypersurfaces having elliptic singularities.
引用
收藏
页码:87 / 100
页数:13
相关论文