Normal Reduction Numbers for Normal Surface Singularities with Application to Elliptic Singularities of Brieskorn Type

被引:0
|
作者
Tomohiro Okuma
Kei-ichi Watanabe
Ken-ichi Yoshida
机构
[1] Yamagata University,Department of Mathematical Sciences, Faculty of Science
[2] Nihon University,Department of Mathematics, College of Humanities and Sciences
来源
关键词
Normal reduction number; Geometric genus; Hypersurface of Brieskorn type; 13B22; Secondary 14B05; 14J17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give a formula for normal reduction number of an integrally closed m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak m$\end{document}-primary ideal of a two-dimensional normal local ring (A,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(A,\mathfrak m)$\end{document} in terms of the geometric genus pg(A) of A. Also, we compute the normal reduction number of the maximal ideal of Brieskorn hypersurfaces. As an application, we give a short proof of a classification of Brieskorn hypersurfaces having elliptic singularities.
引用
收藏
页码:87 / 100
页数:13
相关论文
共 50 条
  • [21] A HARNACK ESTIMATE FOR REAL NORMAL SURFACE SINGULARITIES
    ADKINS, WA
    PACIFIC JOURNAL OF MATHEMATICS, 1984, 114 (02) : 257 - 265
  • [22] NORMAL F-PURE SURFACE SINGULARITIES
    MEHTA, VB
    SRINIVAS, V
    JOURNAL OF ALGEBRA, 1991, 143 (01) : 130 - 143
  • [23] Singularities on normal varieties
    de Fernex, Tommaso
    Hacon, Christopher D.
    COMPOSITIO MATHEMATICA, 2009, 145 (02) : 393 - 414
  • [24] The Minimal Cycles over Brieskorn Complete Intersection Surface Singularities
    Meng, Fanning
    Yuan, Wenjun
    Wang, Zhigang
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (02): : 277 - 286
  • [25] Milnor numbers for surface singularities
    Melle-Hernández, A
    ISRAEL JOURNAL OF MATHEMATICS, 2000, 115 (1) : 29 - 50
  • [26] Milnor numbers for surface singularities
    A. Melle-Hernández
    Israel Journal of Mathematics, 2000, 115 : 29 - 50
  • [27] A characterization of the vanishing of the second plurigenus for normal surface singularities
    Wada, Koukichi
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (02) : 221 - 230
  • [28] ON POINCARE SERIES ASSOCIATED WITH LINKS OF NORMAL SURFACE SINGULARITIES
    Laszlo, Tamas
    Szilagyi, Zsolt
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (09) : 6403 - 6436
  • [29] On -K2 for normal surface singularities II
    Chen, H
    Ishii, S
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (09) : 1193 - 1202
  • [30] LINEAR SUBSPACE ARRANGEMENTS ASSOCIATED WITH NORMAL SURFACE SINGULARITIES
    Nemethi, Andras
    JOURNAL OF SINGULARITIES, 2018, 18 : 464 - 476