WEIGHTED HOMOGENEOUS SURFACE SINGULARITIES HOMEOMORPHIC TO BRIESKORN COMPLETE INTERSECTIONS

被引:0
|
作者
Okuma, Tomohiro [1 ]
机构
[1] Yamagata Univ, Dept Math Sci, Yamagata 9908560, Japan
来源
JOURNAL OF SINGULARITIES | 2021年 / 23卷
关键词
Surface singularities; weighted homogeneous singularities; Brieskorn complete inter-sections; geometric genus; maximal ideal cycles; MAXIMAL IDEAL CYCLES; GEOMETRIC GENUS; COHOMOLOGY; RINGS;
D O I
10.5427/jsing.2021.23j
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given topological type of a normal surface singularity, there are various types of complex structures which realize it. We are interested in the following problem: Find the maximum of the geometric genus and a condition for that the maximal ideal cycle coincides with the fundamental cycle on the minimal good resolution. In this paper, we study weighted homogeneous surface singularities homeomorphic to Brieskorn complete intersection singularities from the perspective of the problem.
引用
收藏
页码:170 / 193
页数:24
相关论文
共 50 条
  • [1] SINGULARITIES AND COVERINGS OF WEIGHTED COMPLETE-INTERSECTIONS
    DIMCA, A
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1986, 366 : 184 - 193
  • [2] The Minimal Cycles over Brieskorn Complete Intersection Surface Singularities
    Meng, Fanning
    Yuan, Wenjun
    Wang, Zhigang
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (02): : 277 - 286
  • [3] BRIESKORN COMPLETE INTERSECTIONS AND AUTOMORPHIC FORMS
    NEUMANN, WD
    INVENTIONES MATHEMATICAE, 1977, 42 : 285 - 293
  • [4] On Yau sequence over complete intersection surface singularities of Brieskorn type
    Meng, Fanning
    MANUSCRIPTA MATHEMATICA, 2024, 175 (1-2) : 97 - 115
  • [5] The Minimal Cycles over Isolated Brieskorn Complete Intersection Surface Singularities
    Meng, Fanning
    Lin, Jianming
    Yuan, Wenjun
    Wang, Zhigang
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 223 - 229
  • [6] THE MAXIMAL IDEAL CYCLES OVER COMPLETE INTERSECTION SURFACE SINGULARITIES OF BRIESKORN TYPE
    Meng, Fan-Ning
    Okuma, Tomohiro
    KYUSHU JOURNAL OF MATHEMATICS, 2014, 68 (01) : 121 - 137
  • [7] The embedding dimension of weighted homogeneous surface singularities
    Nemethi, Andras
    Okuma, Tomohiro
    JOURNAL OF TOPOLOGY, 2010, 3 (03) : 643 - 667
  • [8] Bi-Lipschitz geometry of weighted homogeneous surface singularities
    Lev Birbrair
    Alexandre Fernandes
    Walter D. Neumann
    Mathematische Annalen, 2008, 342 : 139 - 144
  • [9] Bi-Lipschitz geometry of weighted homogeneous surface singularities
    Birbrair, Lev
    Fernandes, Alexandre
    Neumann, Walter D.
    MATHEMATISCHE ANNALEN, 2008, 342 (01) : 139 - 144
  • [10] MONODROMY OF WEIGHTED HOMOGENEOUS SINGULARITIES
    ORLIK, P
    RANDELL, R
    INVENTIONES MATHEMATICAE, 1977, 39 (03) : 199 - 211