Perazzo hypersurfaces and the weak Lefschetz property

被引:2
|
作者
Miro-Roig, Rosa M. [1 ]
Perez, Josep [1 ]
机构
[1] Univ Barcelona, Fac Matemat & Informat, Gran Via Corts Catalanes 585, Barcelona 08007, Spain
关键词
Perazzo hypersurfaces; Weak Lefschetz property; Artinian Gorenstein algebras; Hilbert function; NOETHERS; HESSIANS; GORDAN;
D O I
10.1016/j.jalgebra.2024.02.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with Perazzo hypersurfaces X = V(f) in Pn+2 defined by a homogeneous polynomial f(x0, x1, ..., xn, u, v) = p0(u, v)x0 + p1(u, v)x1 + center dot center dot center dot + pn(u, v)xn + g(u, v), where p0, p1, . . . , pn are algebraically dependent but linearly independent forms of degree d - 1 in K[u, v] and g is a form in K[u, v] of degree d. Perazzo hypersurfaces have vanishing hessian and, hence, the associated graded artinian Gorenstein algebra Af fails the strong Lefschetz property. In this paper, we first determine the maximum and minimum Hilbert function of Af , we prove that the Hilbert function of Af is always unimo dal and we determine when Af satisfies the weak Lefschetz property. We illustrate our results with many examples and we show that our results do not generalize to Perazzo hypersurfaces X = V(f) in Pn+3 defined by a homogeneous polynomial f(x0, x1, . . . , xn, u, v, w) = p0(u, v, w)x0 +p1(u, v, w)x1 + center dot center dot center dot + pn(u, v, w)xn + g(u, v, w), where p0, p1, . . . , pn are algebraically dependent but linearly independent forms of degree d - 1 in K[u, v, w] and g is a form in K[u, v, w] of degree d. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:357 / 375
页数:19
相关论文
共 50 条
  • [1] Perazzo 3-folds and the weak Lefschetz property
    Fiorindo, Luca
    Mezzetti, Emilia
    Miro-Roig, Rosa M.
    JOURNAL OF ALGEBRA, 2023, 626 : 56 - 81
  • [2] Perazzo n-folds and the weak Lefschetz property
    Mezzetti, Emilia
    Miro-Roig, Rosa M.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (06) : 2277 - 2295
  • [3] THE STRENGTH OF THE WEAK LEFSCHETZ PROPERTY
    Migliore, Juan
    Zanello, Fabrizio
    ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (04) : 1417 - 1433
  • [4] INTERPOLATION AND THE WEAK LEFSCHETZ PROPERTY
    Nagel, Uwe
    Trok, Bill
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (12) : 8849 - 8870
  • [5] Laplace Equations and the Weak Lefschetz Property
    Mezzetti, Emilia
    Miro-Roig, Rosa M.
    Ottaviani, Giorgio
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (03): : 634 - 654
  • [6] The Weak Lefschetz Property of Whiskered Graphs
    Cooper, Susan M.
    Faridi, Sara
    Holleben, Thiago
    Nicklasson, Lisa
    Van Tuyl, Adam
    LEFSCHETZ PROPERTIES, SLP-WLP 2022, 2024, 59 : 97 - 110
  • [7] THE WEAK LEFSCHETZ PROPERTY, MONOMIAL IDEALS, AND LOZENGES
    Cook, David, II
    Nagel, Uwe
    ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (01) : 377 - 395
  • [8] Complete intersections of quadrics and the Weak Lefschetz Property
    Alzati, Alberto
    Re, Riccardo
    COLLECTANEA MATHEMATICA, 2019, 70 (02) : 283 - 294
  • [9] On the weak Lefschetz property for powers of linear forms
    Migliore, Juan C.
    Miro-Roig, Rosa M.
    Nagel, Uwe
    ALGEBRA & NUMBER THEORY, 2012, 6 (03) : 487 - 526
  • [10] THE WEAK LEFSCHETZ PROPERTY FOR QUOTIENTS BY QUADRATIC MONOMIALS
    Migliore, Juan
    Nagel, Uwe
    Schenck, Hal
    MATHEMATICA SCANDINAVICA, 2020, 126 (01) : 41 - 60