Perazzo hypersurfaces and the weak Lefschetz property

被引:2
|
作者
Miro-Roig, Rosa M. [1 ]
Perez, Josep [1 ]
机构
[1] Univ Barcelona, Fac Matemat & Informat, Gran Via Corts Catalanes 585, Barcelona 08007, Spain
关键词
Perazzo hypersurfaces; Weak Lefschetz property; Artinian Gorenstein algebras; Hilbert function; NOETHERS; HESSIANS; GORDAN;
D O I
10.1016/j.jalgebra.2024.02.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with Perazzo hypersurfaces X = V(f) in Pn+2 defined by a homogeneous polynomial f(x0, x1, ..., xn, u, v) = p0(u, v)x0 + p1(u, v)x1 + center dot center dot center dot + pn(u, v)xn + g(u, v), where p0, p1, . . . , pn are algebraically dependent but linearly independent forms of degree d - 1 in K[u, v] and g is a form in K[u, v] of degree d. Perazzo hypersurfaces have vanishing hessian and, hence, the associated graded artinian Gorenstein algebra Af fails the strong Lefschetz property. In this paper, we first determine the maximum and minimum Hilbert function of Af , we prove that the Hilbert function of Af is always unimo dal and we determine when Af satisfies the weak Lefschetz property. We illustrate our results with many examples and we show that our results do not generalize to Perazzo hypersurfaces X = V(f) in Pn+3 defined by a homogeneous polynomial f(x0, x1, . . . , xn, u, v, w) = p0(u, v, w)x0 +p1(u, v, w)x1 + center dot center dot center dot + pn(u, v, w)xn + g(u, v, w), where p0, p1, . . . , pn are algebraically dependent but linearly independent forms of degree d - 1 in K[u, v, w] and g is a form in K[u, v, w] of degree d. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:357 / 375
页数:19
相关论文
共 50 条
  • [31] THE WEAK LEFSCHETZ PROPERTY FOR MONOMIAL COMPLETE INTERSECTION IN POSITIVE CHARACTERISTIC
    Kustin, Andrew R.
    Vraciu, Adela
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (09) : 4571 - 4601
  • [32] MONOMIAL IDEALS, ALMOST COMPLETE INTERSECTIONS AND THE WEAK LEFSCHETZ PROPERTY
    Migliore, Juan C.
    Miro-Roig, Rosa M.
    Nagel, Uwe
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (01) : 229 - 257
  • [33] Monomial complete intersections, the weak Lefschetz property and plane partitions
    Li, Jizhou
    Zanello, Fabrizio
    DISCRETE MATHEMATICS, 2010, 310 (24) : 3558 - 3570
  • [34] Star-Configurations in Pn and the Weak-Lefschetz Property
    Kim, Young Rock
    Shin, Yong-Su
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (09) : 3853 - 3873
  • [35] On the weak Lefschetz property for vector bundles on P2
    Failla, Gioia
    Flores, Zachary
    Peterson, Chris
    JOURNAL OF ALGEBRA, 2021, 568 : 22 - 34
  • [36] On the Weak Lefschetz Property for artinian Gorenstein algebras of codimension three
    Boij, Mats
    Migliore, Juan
    Miro-Roig, Rosa M.
    Nagel, Uwe
    Zanello, Fabrizio
    JOURNAL OF ALGEBRA, 2014, 403 : 48 - 68
  • [37] Syzygy bundles on P2 and the weak Lefschetz property
    Brenner, Holger
    Kaid, Almar
    ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (04) : 1299 - 1308
  • [38] On the Weak Lefschetz Property for Hilbert functions of almost complete intersections
    Ragusa, Alfio
    Zappala, Giuseppe
    COLLECTANEA MATHEMATICA, 2013, 64 (01) : 73 - 83
  • [39] TOGLIATTI SYSTEMS ASSOCIATED TO THE DIHEDRAL GROUP AND THE WEAK LEFSCHETZ PROPERTY
    Colarte-Gomez, Liena
    Mezzetti, Emilia
    Miro-Roig, Rosa M.
    Salat-Molto, Marti
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 247 (01) : 195 - 215
  • [40] Togliatti systems associated to the dihedral group and the weak Lefschetz property
    Liena Colarte-Gómez
    Emilia Mezzetti
    Rosa M. Miró-Roig
    Martí Salat-Moltó
    Israel Journal of Mathematics, 2022, 247 : 195 - 215