The Weak Lefschetz Property of Whiskered Graphs

被引:0
|
作者
Cooper, Susan M. [1 ]
Faridi, Sara [2 ]
Holleben, Thiago [2 ]
Nicklasson, Lisa [3 ]
Van Tuyl, Adam [4 ]
机构
[1] Univ Manitoba, Dept Math, 520 Machray Hall,186 Dysart Rd, Winnipeg, MB R3T 2N2, Canada
[2] Dalhousie Univ, Dept Math & Stat, 6297 Castine Way,POB 15000, Halifax, NS B3H 4R2, Canada
[3] Malardalen Univ, Div Math & Phys, S-72123 Vasteras, Sweden
[4] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4L8, Canada
来源
基金
瑞典研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Weak Lefschetz property; Graded Artinian rings; Whiskered graphs; Pseudo-manifolds; COMPLETE-INTERSECTIONS; IDEALS;
D O I
10.1007/978-981-97-3886-1_5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Artinian level algebras arising from the whiskering of a graph. Employing a result by Dao-Nair we show that multiplication by a general linear form has maximal rank in degrees 1 and n-1 when the characteristic is not two, where n is the number of vertices in the graph. Moreover, the multiplication is injective in degrees < n/2 when the characteristic is zero, following a proof by Hausel. Our result in the characteristic zero case is optimal in the sense that there are whiskered graphs for which the multiplication maps in all intermediate degrees n/2,..., n - 2 of the associated Artinian algebras fail to have maximal rank, and consequently, the weak Lefschetz property.
引用
收藏
页码:97 / 110
页数:14
相关论文
共 50 条
  • [1] THE STRENGTH OF THE WEAK LEFSCHETZ PROPERTY
    Migliore, Juan
    Zanello, Fabrizio
    ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (04) : 1417 - 1433
  • [2] INTERPOLATION AND THE WEAK LEFSCHETZ PROPERTY
    Nagel, Uwe
    Trok, Bill
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (12) : 8849 - 8870
  • [3] Laplace Equations and the Weak Lefschetz Property
    Mezzetti, Emilia
    Miro-Roig, Rosa M.
    Ottaviani, Giorgio
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (03): : 634 - 654
  • [4] Perazzo hypersurfaces and the weak Lefschetz property
    Miro-Roig, Rosa M.
    Perez, Josep
    JOURNAL OF ALGEBRA, 2024, 646 : 357 - 375
  • [5] THE WEAK LEFSCHETZ PROPERTY, MONOMIAL IDEALS, AND LOZENGES
    Cook, David, II
    Nagel, Uwe
    ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (01) : 377 - 395
  • [6] Complete intersections of quadrics and the Weak Lefschetz Property
    Alzati, Alberto
    Re, Riccardo
    COLLECTANEA MATHEMATICA, 2019, 70 (02) : 283 - 294
  • [7] On the weak Lefschetz property for powers of linear forms
    Migliore, Juan C.
    Miro-Roig, Rosa M.
    Nagel, Uwe
    ALGEBRA & NUMBER THEORY, 2012, 6 (03) : 487 - 526
  • [8] THE WEAK LEFSCHETZ PROPERTY FOR QUOTIENTS BY QUADRATIC MONOMIALS
    Migliore, Juan
    Nagel, Uwe
    Schenck, Hal
    MATHEMATICA SCANDINAVICA, 2020, 126 (01) : 41 - 60
  • [9] The weak Lefschetz property of equigenerated monomial ideals
    Altafi, Nasrin
    Boij, Mats
    JOURNAL OF ALGEBRA, 2020, 556 : 136 - 168
  • [10] Complete intersections of quadrics and the Weak Lefschetz Property
    Alberto Alzati
    Riccardo Re
    Collectanea Mathematica, 2019, 70 : 283 - 294