Using Natural Language Processing to Identify Different Lens Pathology in Electronic Health Records

被引:1
|
作者
Stein, Joshua d. [1 ,2 ]
Zhou, Yunshu [1 ]
Andrews, Chris a. [1 ]
Kim, Judy e. [3 ]
Addis, Victoria [4 ]
Bixler, Jill [1 ]
Grove, Nathan [5 ]
Mcmillan, Brian [6 ]
Munir, Saleha z. [7 ]
Pershing, Suzann [8 ,9 ]
Schultz, Jeffrey s. [10 ]
Stagg, Brian c. [11 ]
Wang, Sophia y. [8 ]
Woreta, Fasika [12 ]
机构
[1] Univ Michigan, WK Kellogg Eye Ctr, Dept Ophthalmol & Visual Sci, 1000 Wall St, Ann Arbor, MI 48105 USA
[2] Univ Michigan, Dept Hlth Management & Policy, Sch Publ Hlth, Ann Arbor, MI USA
[3] Med Coll Wisconsin, Dept Ophthalmol & Visual Sci, Milwaukee, WI USA
[4] Univ Penn, Dept Ophthalmol, Philadelphia, PA USA
[5] Univ Colorado, Dept Ophthalmol, Sch Med, Aurora, CO USA
[6] West Virginia Univ, Dept Ophthalmol & Visual Sci, Morgantown, WV USA
[7] Univ Maryland, Dept Ophthalmol & Visual Sci, Sch Med, Baltimore, MD USA
[8] Stanford Univ, Byers Eye Inst Stanford, Dept Ophthalmol, Stanford, CA USA
[9] VA Palo Alto Hlth Care Syst, , Califomia, Palo Alto, CA USA
[10] Montefiore Med Ctr, Dept Ophthalmol, New York, NY USA
[11] Univ Utah, Dept Ophthalmol, Salt Lake City, UT USA
[12] Johns Hopkins Univ, Dept Ophthalmol, Sch Med, Baltimore, MD USA
基金
美国国家卫生研究院;
关键词
CATARACT-SURGERY;
D O I
10.1016/j.ajo.2024.01.030
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
center dot PURPOSE: Nearly all published ophthalmology-related Big Data studies rely exclusively on International Classification of Diseases (ICD) billing codes to identify patients with particular ocular conditions. However, inaccurate or nonspecific codes may be used. We assessed whether natural language processing (NLP), as an alternative approach, could more accurately identify lens pathology. center dot DESIGN: Database study comparing the accuracy of NLP versus ICD billing codes to properly identify lens pathology. center dot METHODS: We developed an NLP algorithm capable of searching free-text lens exam data in the electronic health record (EHR) to identify the type(s) of cataract present, cataract density, presence of intraocular lenses, and other lens pathology. We applied our algorithm to 17.5 million lens exam records in the Sight Outcomes Research Collaborative (SOURCE) repository. We selected 4314 unique lens-exam entries and asked 11 clinicians to assess whether all pathology present in the entries had been correctly identified in the NLP algorithm output. The algorithm's sensitivity at accurately identifying lens pathology was compared with that of the ICD codes. center dot RESULTS: The NLP algorithm correctly identified all lens pathology present in 4104 of the 4314 lens-exam entries (95.1%). For less common lens pathology, algorithm findings were corroborated by reviewing clinicians for 100% of mentions of pseudoexfoliation material and 99.7% for phimosis, subluxation, and synechia. Sensitivity at identifying lens pathology was better for NLP (0.98 [0.96-0.99] than for billing codes (0.49 [0.46-0.53]). center dot CONCLUSIONS: Our NLP algorithm identifies and classifies lens abnormalities routinely documented by eyecare professionals with high accuracy. Such algorithms will help researchers to properly identify and classify ocular pathology, broadening the scope of feasible research using real-world data. (Am J Ophthalmol 2024;262: 153-160. (c) 2024 Elsevier Inc. All rights reserved.)
引用
收藏
页码:153 / 160
页数:8
相关论文
共 50 条
  • [21] Incorporating natural language processing to improve classification of axial spondyloarthritis using electronic health records
    Zhao, Sizheng Steven
    Hong, Chuan
    Cai, Tianrun
    Xu, Chang
    Huang, Jie
    Ermann, Joerg
    Goodson, Nicola J.
    Solomon, Daniel H.
    Cai, Tianxi
    Liao, Katherine P.
    RHEUMATOLOGY, 2020, 59 (05) : 1059 - 1065
  • [22] Natural Language Processing to Improve Prediction of Incident Atrial Fibrillation Using Electronic Health Records
    Ashburner, Jeffrey M.
    Chang, Yuchiao
    Wang, Xin
    Khurshid, Shaan
    Anderson, Christopher D.
    Dahal, Kumar
    Weisenfeld, Dana
    Cai, Tianrun
    Liao, Katherine P.
    Wagholikar, Kavishwar B.
    Murphy, Shawn N.
    Atlas, Steven J.
    Lubitz, Steven A.
    Singer, Daniel E.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2022, 11 (15):
  • [23] Validation of Phenotyping Algorithms for Stroke From Electronic Health Records Using Natural Language Processing
    Zhao, Yiqing
    Fu, Suyang
    Larson, Nicholas B.
    Decker, Paul A.
    Chamberlain, Alanna M.
    Roger, Veronique L.
    Liu, Hongfang
    Bielinski, Suzette J.
    CIRCULATION, 2019, 139
  • [24] Using Natural Language Processing and Machine Learning to Identify Opioids in Electronic Health Record Data
    McDermott, Sean P.
    Wasan, Ajay D.
    JOURNAL OF PAIN RESEARCH, 2023, 16 : 2133 - 2140
  • [25] Using natural language processing to identify opioid use disorder in electronic health record data
    Singleton, Jade
    Li, Chengxi
    Akpunonu, Peter D.
    Abner, Erin L.
    Kucharska-Newton, Anna M.
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2023, 170
  • [27] Validation of deep learning natural language processing algorithm for keyword extraction from pathology reports in electronic health records
    Kim, Yoojoong
    Lee, Jeong Hyeon
    Choi, Sunho
    Lee, Jeong Moon
    Kim, Jong-Ho
    Seok, Junhee
    Joo, Hyung Joon
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [28] Validation of deep learning natural language processing algorithm for keyword extraction from pathology reports in electronic health records
    Yoojoong Kim
    Jeong Hyeon Lee
    Sunho Choi
    Jeong Moon Lee
    Jong-Ho Kim
    Junhee Seok
    Hyung Joon Joo
    Scientific Reports, 10
  • [29] Extracting social determinants of health from electronic health records using natural language processing: a systematic review
    Patra, Braja G.
    Sharma, Mohit M.
    Vekaria, Veer
    Adekkanattu, Prakash
    Patterson, Olga, V
    Glicksberg, Benjamin
    Lepow, Lauren A.
    Ryu, Euijung
    Biernacka, Joanna M.
    Furmanchuk, Al'ona
    George, Thomas J.
    Hogan, William
    Wu, Yonghui
    Yang, Xi
    Bian, Jiang
    Weissman, Myrna
    Wickramaratne, Priya
    Mann, J. John
    Olfson, Mark
    Campion, Thomas R., Jr.
    Weiner, Mark
    Pathak, Jyotishman
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2021, 28 (12) : 2716 - 2727
  • [30] Applying Natural Language Processing Toolkits to Electronic Health Records - An Experience Report
    Barrett, Neil
    Weber-Jahnke, Jens H.
    ADVANCES IN INFORMATION TECHNOLOGY AND COMMUNICATION IN HEALTH, 2009, 143 : 441 - 446