Α-Ga2O3 as a photocatalyst in the degradation of malachite green

被引:36
|
作者
Rodríguez C.I.M. [1 ]
Álvarez M.Á.L. [2 ]
de Jesús Flores Rivera J. [3 ]
Arízaga G.G.C. [1 ]
Michel C.R. [2 ]
机构
[1] Departamento de Química, Universidad de Guadalajara, CUCEI, C.P., Guadalajara, 44430, Jalisco
[2] Departamento de Física, Universidad de Guadalajara, CUCEI, Marcelino García, Guadalajara, C.P. 44430, Jalisco
[3] Departamento de Ingeniería Química, Universidad de Guadalajara, CUCEI, C.P., Guadalajara, 44430, Jalisco
来源
关键词
D O I
10.1149/2.0351907jss
中图分类号
学科分类号
摘要
α-Ga2O3 is a wide-bandgap semiconductor material which was prepared by a novel synthesis method from metallic gallium. It was characterized by X-ray diffraction, infrared spectroscopy, ultraviolet spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. This oxide was also evaluated as a photocatalyst toward the decomposition of malachite green (MG). X-ray photoelectron spectroscopy was used with the purpose of analyzing the changes on the surface of the material before and after the photocatalytic reaction. The results found by X-ray diffraction shows that alfa phase did not transform to another crystalline phase during the reaction. However, a slight change on the relative intensities of the planes (104) and (110), may explain the variation of the morphology of the oxide, associated to a preferential particle erosion. High resolution XPS analyses revealed a shift toward lower binding energies of the O1s level after the photocatalytic reaction, suggesting the presence of oxygen bound to carbonyls or alcohols. Organic nitrogenous residues associated to MG were also detected by the presence of the N1s band observed at 396.7 eV. © The Author(s) 2019.
引用
收藏
页码:Q3180 / Q3186
页数:6
相关论文
共 50 条
  • [21] On the band-structure lineup at Ga2O3, Gd2O3, and Ga2O3(Gd2O3) heterostructures and Ga2O3 Schottky contacts
    Moench, Winfried
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (02) : 1444 - 1448
  • [22] On the band-structure lineup at Ga2O3, Gd2O3, and Ga2O3(Gd2O3) heterostructures and Ga2O3 Schottky contacts
    Winfried Mönch
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 1444 - 1448
  • [23] Photocatalytic Performance of α- and β-Ga2O3 for the Degradation of Tetracycline Hydrochloride in Water
    Li Guo-Ping
    Weng Wen
    Li Fei-Ming
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2015, 34 (11) : 1779 - 1785
  • [24] Proton irradiation Of Ga2O3 Schottky diodes and NiO/Ga2O3 heterojunctions
    Polyakov, Alexander Y.
    Saranin, Danila S.
    Shchemerov, Ivan V.
    Vasilev, Anton A.
    Romanov, Andrei A.
    Kochkova, Anastasiia I.
    Gostischev, Pavel
    Chernykh, Alexey V.
    Alexanyan, Luiza A.
    Matros, Nikolay R.
    Lagov, Petr B.
    Doroshkevich, Aleksandr S.
    Isayev, Rafael Sh.
    Pavlov, Yu. S.
    Kislyuk, Alexander M.
    Yakimov, Eugene B.
    Pearton, Stephen J.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [25] Photocatalytic Performance of α- and β-Ga2O3 for the Degradation of Tetracycline Hydrochloride in Water
    李国平
    翁文
    李飞明
    结构化学, 2015, 34 (11) : 1779 - 1785
  • [26] Halide vapor phase epitaxial growth of β-Ga2O3 and α-Ga2O3 films
    Leach, J. H.
    Udwary, K.
    Rumsey, J.
    Dodson, G.
    Splawn, H.
    Evans, K. R.
    APL MATERIALS, 2019, 7 (02):
  • [27] Properties of Ga2O3/Ga2O3:Sn/CIGS for visible light sensors
    Kikuchi, K.
    Imura, S.
    Miyakawa, K.
    Ohtake, H.
    Kubota, M.
    6TH INTERNATIONAL CONFERENCE ON OPTICAL, OPTOELECTRONIC AND PHOTONIC MATERIALS AND APPLICATIONS (ICOOPMA) 2014, 2015, 619
  • [28] Ga vacancies in β-Ga2O3: split or not?
    Tuomisto, Filip
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2023, 62 (SF)
  • [29] Formation of γ-Ga2O3 by ion implantation: Polymorphic phase transformation of β-Ga2O3
    Garcia-Fernandez, J.
    Kjeldby, S. B.
    Nguyen, P. D.
    Karlsen, O. B.
    Vines, L.
    Prytz, O.
    APPLIED PHYSICS LETTERS, 2022, 121 (19)
  • [30] Growth of β-Ga2O3 Thin Films on Ga2O3/GaN/Sapphire Template
    Jiao T.
    Li Z.-M.
    Wang Q.
    Dong X.
    Zhang Y.-T.
    Bai S.
    Zhang B.-L.
    Du G.-T.
    Faguang Xuebao/Chinese Journal of Luminescence, 2020, 41 (03): : 281 - 287