Few-Shot Learning With Class Imbalance

被引:13
|
作者
Ochal M. [1 ]
Patacchiola M. [2 ,3 ]
Vazquez J. [4 ,5 ]
Storkey A. [1 ]
Wang S. [6 ]
机构
[1] Heriot-Watt University, School of Engineering and Physical Sciences, Edinburgh
[2] University of Edinburgh, School of Informatics, Edinburgh
[3] University of Cambridge, Department of Engineering, Cambridge
[4] SeeByte Ltd., Edinburgh
[5] Leonardo S.p.A., Edinburgh
[6] Imperial College London, I-X & the Department of Electrical and Electronic Engineering, London
来源
关键词
Class imbalance; classification and regression; few-shot learning (FSL); low-shot learning; meta learning (ML);
D O I
10.1109/TAI.2023.3298303
中图分类号
学科分类号
摘要
Few-shot learning (FSL) algorithms are commonly trained through meta-learning (ML), which exposes models to batches of tasks sampled from a meta-dataset to mimic tasks seen during evaluation. However, the standard training procedures overlook the real-world dynamics where classes commonly occur at different frequencies. While it is generally understood that class imbalance harms the performance of supervised methods, limited research examines the impact of imbalance on the FSL evaluation task. Our analysis compares ten state-of-the-art ML and FSL methods on different imbalance distributions and rebalancing techniques. Our results reveal that: 1) some FSL methods display a natural disposition against imbalance while most other approaches produce a performance drop by up to 17% compared to the balanced task without the appropriate mitigation; 2) many ML algorithms will not automatically learn to balance from exposure to imbalanced training tasks; 3) classical rebalancing strategies, such as random oversampling, can still be very effective, leading to state-of-the-art performances and should not be overlooked. © 2020 IEEE.
引用
收藏
页码:1348 / 1358
页数:10
相关论文
共 50 条
  • [31] Rethinking Few-Shot Class-Incremental Learning: Learning from Yourself
    Tang, Yu-Ming
    Peng, Yi-Xing
    Meng, Jingke
    Zheng, Wei-Shi
    COMPUTER VISION - ECCV 2024, PT LXI, 2025, 15119 : 108 - 128
  • [32] Rethinking few-shot class-incremental learning: A lazy learning baseline
    Qin, Zhili
    Han, Wei
    Liu, Jiaming
    Zhang, Rui
    Yang, Qingli
    Sun, Zejun
    Shao, Junming
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [33] Few-Shot Class-Incremental Learning Based on Feature Distribution Learning
    Yao, Guangle
    Zhu, Juntao
    Zhou, Wenlong
    Zhang, Guiyu
    Zhang, Wei
    Zhang, Qian
    Computer Engineering and Applications, 2023, 59 (14) : 151 - 157
  • [34] Analogical Learning-Based Few-Shot Class-Incremental Learning
    Li, Jiashuo
    Dong, Songlin
    Gong, Yihong
    He, Yuhang
    Wei, Xing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 5493 - 5504
  • [35] MetaFSCEL A Meta-Learning Approach for Few-Shot Class Incremental Learning
    Chi, Zhixiang
    Gu, Li
    Liu, Huan
    Wang, Yang
    Yu, Yuanhao
    Tang, Jin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 14146 - 14155
  • [36] Prompt-based learning for few-shot class-incremental learning
    Yuan, Jicheng
    Chen, Hang
    Tian, Songsong
    Li, Wenfa
    Li, Lusi
    Ning, Enhao
    Zhang, Yugui
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 120 : 287 - 295
  • [37] Few-Shot Learning with Embedded Class Models and Shot-Free Meta Training
    Ravichandran, Avinash
    Bhotika, Rahul
    Soatto, Stefano
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 331 - 339
  • [38] Decision Boundary Optimization for Few-shot Class-Incremental Learning
    Guo, Chenxu
    Zhao, Qi
    Lyu, Shuchang
    Liu, Binghao
    Wang, Chunlei
    Chen, Lijiang
    Cheng, Guangliang
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 3493 - 3503
  • [39] Flexible few-shot class-incremental learning with prototype container
    Xu, Xinlei
    Wang, Zhe
    Fu, Zhiling
    Guo, Wei
    Chi, Ziqiu
    Li, Dongdong
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (15): : 10875 - 10889
  • [40] Few-Shot Class-Incremental Learning for Named Entity Recognition
    Wang, Rui
    Yu, Tong
    Zhao, Handong
    Kim, Sungchul
    Mitra, Subrata
    Zhang, Ruiyi
    Henao, Ricardo
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 571 - 582