Spatiotemporal Fusion via Conditional Diffusion Model

被引:0
|
作者
Ma, Yaobin [1 ]
Wang, Qi [2 ]
Wei, Jingbo [3 ]
机构
[1] Nanchang Univ, Sch Resources & Environm, Nanchang 330031, Peoples R China
[2] Nanchang Univ, Sch Informat Engn, Nanchang 330031, Peoples R China
[3] Nanchang Univ, Inst Space Sci & Technol, Nanchang 330031, Peoples R China
基金
中国国家自然科学基金;
关键词
Diffusion model; Landsat-7; spatiotemporal fusion;
D O I
10.1109/LGRS.2024.3378715
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Spatiotemporal fusion aims to reconstruct sequence remote sensing images in an economically efficient way, for which we observe that the sensor and scale errors can approach the distribution of Gaussian noise. To model the random noise, a spatiotemporal fusion method based on a conditional diffusion model is proposed. A new encoder-decoder network is designed to fuse multisource images. The new model learns the noise distribution at the forward diffusion stage and employs an iterative removal of the noise at the backward diffusion stage, which enhances the model against the Gaussian noise. The proposed method is evaluated on two datasets and compared with seven state-of-the-art algorithms, in which the average root mean square errors (RMSEs) decrease from 0.0198 to 0.0188 for Landsat-7 and from 0.0155 to 0.0141 for Landsat-5, respectively. The experimental results also demonstrate that the proposed method can preserve clearer details and adapt better to abrupt phenological changes.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Generating Realistic Brain MRIs via a Conditional Diffusion Probabilistic Model
    Peng, Wei
    Adeli, Ehsan
    Bosschieter, Tomas
    Park, Sang Hyun
    Zhao, Qingyu
    Pohl, Kilian M.
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VIII, 2023, 14227 : 14 - 24
  • [2] Unstoppable Attack: Label-Only Model Inversion Via Conditional Diffusion Model
    Liu, Rongke
    Wang, Dong
    Ren, Yizhi
    Wang, Zhen
    Guo, Kaitian
    Qin, Qianqian
    Liu, Xiaolei
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 3958 - 3973
  • [3] Bayesian conditional diffusion models for versatile spatiotemporal turbulence generation
    Gao, Han
    Han, Xu
    Fan, Xiantao
    Sun, Luning
    Liu, Li -Ping
    Duan, Lian
    Wang, Jian-Xun
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 427
  • [4] Spatiotemporal Reflectance Fusion via Sparse Representation
    Huang, Bo
    Song, Huihui
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (10): : 3707 - 3716
  • [5] Model fusion of Conditional Random Fields
    Li, Lu
    Wang, Xuan
    Yu, Yanbing
    Wang, Xiaolong
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 1452 - 1456
  • [6] DF-CDM: Conditional diffusion model with data fusion for structural dynamic response reconstruction
    Shu, Jiangpeng
    Yu, Hongchuan
    Liu, Gaoyang
    Duan, Yuanfeng
    Hu, Hao
    Zhang, He
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 222
  • [7] A REMOTE SENSING SPATIOTEMPORAL FUSION MODEL OF LANDSAT AND MODIS DATA VIA DEEP LEARNING
    Dai, Peiyu
    Zhang, Hongyan
    Zhang, Liangpei
    Shen, Huanfeng
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 7030 - 7033
  • [8] Spatiotemporal structures in a model with delay and diffusion
    Bestehorn, M
    Grigorieva, EV
    Kaschenko, SA
    [J]. PHYSICAL REVIEW E, 2004, 70 (02): : 12
  • [9] Spatiotemporal Fusion Network for Land Surface Temperature Based on a Conditional Variational Autoencoder
    Chen, Yuncheng
    Yang, Yingbao
    Pan, Xin
    Meng, Xiangjin
    Hu, Jia
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] A Flexible Reference-Insensitive Spatiotemporal Fusion Model for Remote Sensing Images Using Conditional Generative Adversarial Network
    Tan, Zhenyu
    Gao, Meiling
    Li, Xinghua
    Jiang, Liangcun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60