A REMOTE SENSING SPATIOTEMPORAL FUSION MODEL OF LANDSAT AND MODIS DATA VIA DEEP LEARNING

被引:0
|
作者
Dai, Peiyu
Zhang, Hongyan [1 ]
Zhang, Liangpei
Shen, Huanfeng
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatiotemporal fusion; convolutional neural network; non-linear mapping;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a novel spatiotemporal fusion model based on deep learning is proposed, which handles the huge spatial resolution gap and the nonlinear mapping between the high spatial resolution (HSR) image and the corresponding high temporal resolution (HTR) image at the same imaging time. Considering the huge spatial resolution gap, a two-layer fusion strategy is adopted. In each layer, the convolutional neural network (CNN) model is employed to exploit the non-linear mapping between the HSR and HTR image and reconstruct the high-spatial and high-temporal (HSHT) resolution images. In the experiment, Landsat data is the representation of the high spatial resolution images, MODIS data is used as the corresponding low spatial resolution images. The experimental results on two different datasets clearly illustrate the superiority of the proposed model.
引用
收藏
页码:7030 / 7033
页数:4
相关论文
共 50 条
  • [1] Spatiotemporal Fusion of MODIS and Landsat-7 Reflectance Images via Compressed Sensing
    Wei, Jingbo
    Wang, Lizhe
    Liu, Peng
    Chen, Xiaodao
    Li, Wei
    Zomaya, Albert Y.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (12): : 7126 - 7139
  • [2] Spatiotemporal Fusion of Remote Sensing Image Based on Deep Learning
    Wang, Xiaofei
    Wang, Xiaoyi
    [J]. JOURNAL OF SENSORS, 2020, 2020
  • [3] An Adaptive Multiscale Generative Adversarial Network for the Spatiotemporal Fusion of Landsat and MODIS Data
    Pan, Xiaoyu
    Deng, Muyuan
    Ao, Zurui
    Xin, Qinchuan
    [J]. REMOTE SENSING, 2023, 15 (21)
  • [4] Deep-STEP: A Deep Learning Approach for Spatiotemporal Prediction of Remote Sensing Data
    Das, Monidipa
    Ghosh, Soumya K.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) : 1984 - 1988
  • [5] A Novel Remote Sensing Spatiotemporal Data Fusion Framework Based on the Combination of Deep-Learning Downscaling and Traditional Fusion Algorithm
    Cui, Dunyue
    Wang, Shidong
    Zhao, Cunwei
    Zhang, Hebing
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 7957 - 7970
  • [6] Removing Influence of MODIS Strip Noise in Spatiotemporal Fusion of Remote Sensing Imagery
    Li, Jiali
    Li, Yunfei
    Li, Jun
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [7] Deep learning decision fusion for the classification of urban remote sensing data
    Abdi, Ghasem
    Samadzadegan, Farhad
    Reinartz, Peter
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (01):
  • [8] Deep learning decision fusion for the classification of urban remote sensing data
    [J]. Abdi, Ghasem (ghasem.abdi@ut.ac.ir), 1600, SPIE (12):
  • [9] Deep learning in multimodal remote sensing data fusion: A comprehensive review
    Li, Jiaxin
    Hong, Danfeng
    Gao, Lianru
    Yao, Jing
    Zheng, Ke
    Zhang, Bing
    Chanussot, Jocelyn
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 112
  • [10] Data fusion of atmospheric ozone remote sensing Lidar according to deep learning
    Jiang, Yuan
    Qiao, Ru
    Zhu, Yongjie
    Wang, Guibao
    [J]. JOURNAL OF SUPERCOMPUTING, 2021, 77 (07): : 6904 - 6919