Spatiotemporal Fusion via Conditional Diffusion Model

被引:0
|
作者
Ma, Yaobin [1 ]
Wang, Qi [2 ]
Wei, Jingbo [3 ]
机构
[1] Nanchang Univ, Sch Resources & Environm, Nanchang 330031, Peoples R China
[2] Nanchang Univ, Sch Informat Engn, Nanchang 330031, Peoples R China
[3] Nanchang Univ, Inst Space Sci & Technol, Nanchang 330031, Peoples R China
基金
中国国家自然科学基金;
关键词
Diffusion model; Landsat-7; spatiotemporal fusion;
D O I
10.1109/LGRS.2024.3378715
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Spatiotemporal fusion aims to reconstruct sequence remote sensing images in an economically efficient way, for which we observe that the sensor and scale errors can approach the distribution of Gaussian noise. To model the random noise, a spatiotemporal fusion method based on a conditional diffusion model is proposed. A new encoder-decoder network is designed to fuse multisource images. The new model learns the noise distribution at the forward diffusion stage and employs an iterative removal of the noise at the backward diffusion stage, which enhances the model against the Gaussian noise. The proposed method is evaluated on two datasets and compared with seven state-of-the-art algorithms, in which the average root mean square errors (RMSEs) decrease from 0.0198 to 0.0188 for Landsat-7 and from 0.0155 to 0.0141 for Landsat-5, respectively. The experimental results also demonstrate that the proposed method can preserve clearer details and adapt better to abrupt phenological changes.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [31] Video copy detection based on spatiotemporal fusion model
    Li, Jianmin
    Liang, Yingyu
    Zhang, Bo
    [J]. Tsinghua Science and Technology, 2012, 17 (01) : 51 - 59
  • [32] The FIRST model: Spatiotemporal fusion incorrporting spectral autocorrelation
    Liu, Shuaijun
    Zhou, Junxiong
    Qiu, Yuean
    Chen, Jin
    Zhu, Xiaolin
    Chen, Hui
    [J]. REMOTE SENSING OF ENVIRONMENT, 2022, 279
  • [33] An Intelligent Multiscale Spatiotemporal Fusion Network Model for TCM
    Quan, Yu
    Liu, Changfu
    Yuan, Zhuang
    Zhou, Yang
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (07) : 6628 - 6637
  • [34] Model-free conditional screening via conditional distance correlation
    Jun Lu
    Lu Lin
    [J]. Statistical Papers, 2020, 61 : 225 - 244
  • [35] Ultrafast Source Mask Optimization via Conditional Discrete Diffusion
    Chen, Guojin
    Wang, Zixiao
    Yu, Bei
    Pan, David Z.
    Wong, Martin D. F.
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2024, 43 (07) : 2140 - 2150
  • [36] Early warning of tipping in a chemical model with cross-diffusion via spatiotemporal pattern formation and transition
    Lu, Yunxiang
    Xiao, Min
    Huang, Chengdai
    Cheng, Zunshui
    Wang, Zhengxin
    Cao, Jinde
    [J]. CHAOS, 2023, 33 (07)
  • [37] Bayesian Estimation and Model Selection for the Spatiotemporal Autoregressive Model with Autoregressive Conditional Heteroscedasticity Errors
    Su, Bing
    Zhu, Fu-kang
    Huang, Ju
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (04): : 972 - 989
  • [38] Camera matching based on spatiotemporal activity and conditional random field model
    Liu Xiaokai
    Wang Hongyu
    Gao Hongbo
    [J]. IET COMPUTER VISION, 2014, 8 (06) : 487 - 497
  • [39] Bayesian Estimation and Model Selection for the Spatiotemporal Autoregressive Model with Autoregressive Conditional Heteroscedasticity Errors
    Bing SU
    Fu-kang ZHU
    Ju HUANG
    [J]. Acta Mathematicae Applicatae Sinica, 2023, 39 (04) : 972 - 989
  • [40] Bayesian Estimation and Model Selection for the Spatiotemporal Autoregressive Model with Autoregressive Conditional Heteroscedasticity Errors
    Bing Su
    Fu-kang Zhu
    Ju Huang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 972 - 989