A Fractional-Order Mathematical Model of Banana Xanthomonas Wilt Disease Using Caputo Derivatives

被引:0
|
作者
Manickam, A. [1 ]
Kavitha, M. [2 ]
Jaison, A. Benevatho [1 ]
Singh, Arvind Kumar [3 ]
机构
[1] VIT Bhopal Univ, Sch Adv Sci & Languages, Div Math, Bhopal Indore Highway, Sehore 466114, Madhya Pradesh, India
[2] Panimalar Engn Coll, Dept Math, Chennai 600123, Tamil Nadu, India
[3] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi 221005, Uttar Pradesh, India
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 01期
关键词
mathematical model; Caputo fractional derivative; L1 predictor-corrector scheme; error analysis; stability; graphical simulations; CAMPESTRIS PV. MUSACEARUM; DIFFERENCE SCHEME;
D O I
10.37256/cm.5120242479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article investigates a fractional-order mathematical model of Banana Xanthomonas Wilt disease while considering control measures using Caputo derivatives. The proposed model is numerically solved using the L1-based predictor-corrector method to explore the model's dynamics in a particular time range. Stability and error analyses are performed to justify the efficiency of the scheme. The non-local nature of the Caputo fractional derivative, which includes memory effects in the system, is the main motivation for incorporating this derivative in the model. We obtain varieties in the model dynamics while checking various fractional order values.
引用
收藏
页码:136 / 156
页数:21
相关论文
共 50 条
  • [31] Analysis of Caputo fractional-order model for COVID-19 with lockdown
    Ahmed, Idris
    Baba, Isa Abdullahi
    Yusuf, Abdullahi
    Kumam, Poom
    Kumam, Wiyada
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [33] Caputo fractional-order SEIRP model for COVID-19 Pandemic
    Akindeinde, Saheed O.
    Okyere, Eric
    Adewumi, Adebayo O.
    Lebelo, Ramoshweu S.
    Fabelurin, Olanrewaju O.
    Moore, Stephen E.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (01) : 829 - 845
  • [34] Fractional-Order Mathematical Model for Chronic Myeloid Leukaemia
    Fahmy, S.
    El-Geziry, A. M.
    Mohamed, E.
    AbdelAty, Amr. M.
    Radwan, A. G.
    2017 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN (ECCTD), 2017,
  • [35] Analyzing Unemployment Dynamics: A Fractional-Order Mathematical Model
    Rathee, Savita
    Narwal, Yogeeta
    Bansal, Komal
    Mathur, Trilok
    Emadifar, Homan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [36] Mathematical insights into chaos in fractional-order fishery model
    Chen Zakirullah
    Liang Lu
    Kamal Li
    Bahaaeldin Shah
    Thabet Abdalla
    undefined Abdeljawad
    Modeling Earth Systems and Environment, 2025, 11 (3)
  • [37] A delayed plant disease model with Caputo fractional derivatives
    Pushpendra Kumar
    Dumitru Baleanu
    Vedat Suat Erturk
    Mustafa Inc
    V. Govindaraj
    Advances in Continuous and Discrete Models, 2022
  • [38] A delayed plant disease model with Caputo fractional derivatives
    Kumar, Pushpendra
    Baleanu, Dumitru
    Erturk, Vedat Suat
    Inc, Mustafa
    Govindaraj, V
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [39] MODELING AND CHARACTERISTIC ANALYSIS OF FRACTIONAL-ORDER BOOST CONVERTER BASED ON THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVES
    Yu, Donghui
    Liao, Xiaozhong
    Wang, Yong
    Ran, Manjie
    Dalin, Jinhui
    Xia, Jinhui
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023,
  • [40] MODELING AND CHARACTERISTIC ANALYSIS OF FRACTIONAL-ORDER BOOST CONVERTER BASED ON THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVES
    Yu, Donghui
    Liao, Xiaozhong
    Wang, Yong
    Ran, Manjie
    Dalin
    Xia, Jinhui
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (07)