A Fractional-Order Mathematical Model of Banana Xanthomonas Wilt Disease Using Caputo Derivatives

被引:0
|
作者
Manickam, A. [1 ]
Kavitha, M. [2 ]
Jaison, A. Benevatho [1 ]
Singh, Arvind Kumar [3 ]
机构
[1] VIT Bhopal Univ, Sch Adv Sci & Languages, Div Math, Bhopal Indore Highway, Sehore 466114, Madhya Pradesh, India
[2] Panimalar Engn Coll, Dept Math, Chennai 600123, Tamil Nadu, India
[3] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi 221005, Uttar Pradesh, India
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 01期
关键词
mathematical model; Caputo fractional derivative; L1 predictor-corrector scheme; error analysis; stability; graphical simulations; CAMPESTRIS PV. MUSACEARUM; DIFFERENCE SCHEME;
D O I
10.37256/cm.5120242479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article investigates a fractional-order mathematical model of Banana Xanthomonas Wilt disease while considering control measures using Caputo derivatives. The proposed model is numerically solved using the L1-based predictor-corrector method to explore the model's dynamics in a particular time range. Stability and error analyses are performed to justify the efficiency of the scheme. The non-local nature of the Caputo fractional derivative, which includes memory effects in the system, is the main motivation for incorporating this derivative in the model. We obtain varieties in the model dynamics while checking various fractional order values.
引用
收藏
页码:136 / 156
页数:21
相关论文
共 50 条
  • [21] Fractional-Order Model of the Disease Psoriasis:A Control Based Mathematical Approach
    CAO Xianbing
    DATTA Abhirup
    AL BASIR Fahad
    ROY Priti Kumar
    JournalofSystemsScience&Complexity, 2016, 29 (06) : 1565 - 1584
  • [22] Fractional-order model of the disease Psoriasis: A control based mathematical approach
    Xianbing Cao
    Abhirup Datta
    Fahad Al Basir
    Priti Kumar Roy
    Journal of Systems Science and Complexity, 2016, 29 : 1565 - 1584
  • [23] Fractional-Order Model of the Disease Psoriasis: A Control Based Mathematical Approach
    Cao Xianbing
    Datta, Abhirup
    Al Basir, Fahad
    Roy, Priti Kumar
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2016, 29 (06) : 1565 - 1584
  • [24] Reliability analysis for the fractional-order circuit system subject to the uncertain random fractional-order model with Caputo type
    Jin, Ting
    Gao, Shangce
    Xia, Hongxuan
    Ding, Hui
    JOURNAL OF ADVANCED RESEARCH, 2021, 32 : 15 - 26
  • [25] Numerical simulation of fractional-order reaction–diffusion equations with the Riesz and Caputo derivatives
    Kolade M. Owolabi
    Neural Computing and Applications, 2020, 32 : 4093 - 4104
  • [26] AVR Fractional-Order Controller Based on Caputo-Fabrizio Fractional Derivatives and Integral Operators
    Lozynskyy, Andriy
    Kozyra, Jacek
    Kutsyk, Andriy
    Lukasik, Zbigniew
    Kusminska-Fijalkowska, Aldona
    Kasha, Lidiia
    Lishchuk, Andriy
    ENERGIES, 2024, 17 (23)
  • [27] On Class of Fractional-Order Chaotic or Hyperchaotic Systems in the Context of the Caputo Fractional-Order Derivative
    Sene, Ndolane
    Ndiaye, Ameth
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [28] Dynamical Analysis of Generalized Tumor Model with Caputo Fractional-Order Derivative
    Padder, Ausif
    Almutairi, Laila
    Qureshi, Sania
    Soomro, Amanullah
    Afroz, Afroz
    Hincal, Evren
    Tassaddiq, Asifa
    FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [29] Existence and Sensitivity Analysis of a Caputo Fractional-Order Diphtheria Epidemic Model
    Ahmed, Idris
    Kiataramkul, Chanakarn
    Muhammad, Mubarak
    Tariboon, Jessada
    MATHEMATICS, 2024, 12 (13)
  • [30] Analysis of Caputo fractional-order model for COVID-19 with lockdown
    Idris Ahmed
    Isa Abdullahi Baba
    Abdullahi Yusuf
    Poom Kumam
    Wiyada Kumam
    Advances in Difference Equations, 2020