Relationship-Preserving Knowledge Distillation for Zero-Shot Sketch Based Image Retrieval

被引:36
|
作者
Tian, Jialin [1 ,2 ]
Xu, Xing [1 ,2 ]
Wang, Zheng [1 ,2 ,3 ]
Shen, Fumin [1 ,2 ]
Liu, Xin [4 ]
机构
[1] Univ Elect Sci & Technol China, Ctr Future Media, Chengdu, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Sichuan, Peoples R China
[3] UESTC Guangdong, Inst Elect & Informat Engn, Guangzhou, Guangdong, Peoples R China
[4] Huaqiao Univ, Dept Comp Sci, Quanzhou, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Knowledge Distillation; Sketch-Based Image Retrieval; Zero-shot; Learning;
D O I
10.1145/3474085.3475676
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot sketch-based image retrieval is challenging for the modal gap between distributions of sketches and images and the inconsistency of label spaces during training and testing. Previous methods mitigate the modal gap by projecting sketches and images into a joint embedding space. Most of them also bridge seen and unseen classes by leveraging semantic embeddings, e.g., word vectors and hierarchical similarities. In this paper, we propose RelationshipPreserving Knowledge Distillation (RPKD) to study generalizable embeddings from the perspective of knowledge distillation bypassing the usage of semantic embeddings. In particular, we firstly distill the instance-level knowledge to preserve inter-class relationships without semantic similarities that require extra effort to collect. We also reconcile the contrastive relationships among instances between different embedding spaces, which is complementary to instance-level relationships. Furthermore, embedding-induced supervision, which measures the similarities of an instance to partial class embedding centers from the teacher, is developed to align the student's classification confidences. Extensive experiments conducted on three benchmark ZS-SBIR datasets, i.e., Sketchy, TUBerlin, and QuickDraw, demonstrate the superiority of our proposed RPKD approach comparing to the state-of-the-art methods.
引用
收藏
页码:5473 / 5481
页数:9
相关论文
共 50 条
  • [41] Task-like training paradigm in CLIP for zero-shot sketch-based image retrieval
    Zhang, Haoxiang
    Cheng, Deqiang
    Jiang, He
    Liu, Jingjing
    Kou, Qiqi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (19) : 57811 - 57828
  • [42] Elevating All Zero-Shot Sketch-Based Image Retrieval Through Multimodal Prompt Learning
    Singha, Mainak
    Jha, Ankit
    Gupta, Divyam
    Singla, Pranav
    Banerjee, Biplab
    COMPUTER VISION - ECCV 2024, PT XXIV, 2025, 15082 : 1 - 19
  • [43] Cross-Domain Feature Semantic Calibration for Zero-Shot Sketch-Based Image Retrieval
    He, Xuewan
    Wang, Jielei
    Xia, Qianxin
    Lu, Guoming
    Tang, Yuan
    Lu, Hongxia
    2024 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME 2024, 2024,
  • [44] Norm-guided Adaptive Visual Embedding for Zero-Shot Sketch-Based Image Retrieval
    Wang, Wenjie
    Shi, Yufeng
    Chen, Shiming
    Peng, Qinmu
    Zheng, Feng
    You, Xinge
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1106 - 1112
  • [45] Domain disentanglement and fusion based on hyperbolic neural networks for zero-shot sketch-based image retrieval
    Zhang, Qing
    Zhang, Jing
    Su, Xiangdong
    Wang, Yonghe
    Bao, Feilong
    Gao, Guanglai
    INFORMATION PROCESSING & MANAGEMENT, 2025, 62 (01)
  • [46] ATTRIBUTE HASHING FOR ZERO-SHOT IMAGE RETRIEVAL
    Xu, Yahui
    Yang, Yang
    Shen, Fumin
    Xu, Xing
    Zhou, Yuxuan
    Shen, Heng Tao
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 133 - 138
  • [47] Zero-Shot Image Retrieval with Human Feedback
    Agnolucci, Lorenzo
    Baldrati, Alberto
    Bertini, Marco
    Del Bimbo, Alberto
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 9417 - 9419
  • [48] Deep cross-modal discriminant adversarial learning for zero-shot sketch-based image retrieval
    Jiao, Shichao
    Han, Xie
    Xiong, Fengguang
    Yang, Xiaowen
    Han, Huiyan
    He, Ligang
    Kuang, Liqun
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (16): : 13469 - 13483
  • [49] Zero-shot sketch-based image retrieval via adaptive relation-aware metric learning
    Liu, Yang
    Dang, Yuhao
    Gao, Xinbo
    Han, Jungong
    Shao, Ling
    PATTERN RECOGNITION, 2024, 152
  • [50] Progressive Domain-Independent Feature Decomposition Network for Zero-Shot Sketch-Based Image Retrieval
    Xu, Xinxun
    Yang, Muli
    Yang, Yanhua
    Wang, Hao
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 984 - 990