Relationship-Preserving Knowledge Distillation for Zero-Shot Sketch Based Image Retrieval

被引:36
|
作者
Tian, Jialin [1 ,2 ]
Xu, Xing [1 ,2 ]
Wang, Zheng [1 ,2 ,3 ]
Shen, Fumin [1 ,2 ]
Liu, Xin [4 ]
机构
[1] Univ Elect Sci & Technol China, Ctr Future Media, Chengdu, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Sichuan, Peoples R China
[3] UESTC Guangdong, Inst Elect & Informat Engn, Guangzhou, Guangdong, Peoples R China
[4] Huaqiao Univ, Dept Comp Sci, Quanzhou, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Knowledge Distillation; Sketch-Based Image Retrieval; Zero-shot; Learning;
D O I
10.1145/3474085.3475676
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot sketch-based image retrieval is challenging for the modal gap between distributions of sketches and images and the inconsistency of label spaces during training and testing. Previous methods mitigate the modal gap by projecting sketches and images into a joint embedding space. Most of them also bridge seen and unseen classes by leveraging semantic embeddings, e.g., word vectors and hierarchical similarities. In this paper, we propose RelationshipPreserving Knowledge Distillation (RPKD) to study generalizable embeddings from the perspective of knowledge distillation bypassing the usage of semantic embeddings. In particular, we firstly distill the instance-level knowledge to preserve inter-class relationships without semantic similarities that require extra effort to collect. We also reconcile the contrastive relationships among instances between different embedding spaces, which is complementary to instance-level relationships. Furthermore, embedding-induced supervision, which measures the similarities of an instance to partial class embedding centers from the teacher, is developed to align the student's classification confidences. Extensive experiments conducted on three benchmark ZS-SBIR datasets, i.e., Sketchy, TUBerlin, and QuickDraw, demonstrate the superiority of our proposed RPKD approach comparing to the state-of-the-art methods.
引用
收藏
页码:5473 / 5481
页数:9
相关论文
共 50 条
  • [21] Zero-Shot Sketch-Based Image Retrieval via Graph Convolution Network
    Zhang, Zhaolong
    Zhang, Yuejie
    Feng, Rui
    Zhang, Tao
    Fan, Weiguo
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 12943 - 12950
  • [22] Asymmetric Mutual Alignment for Unsupervised Zero-Shot Sketch-Based Image Retrieval
    Yin, Zhihui
    Yan, Jiexi
    Xu, Chenghao
    Deng, Cheng
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 16504 - 16512
  • [23] Zero-Shot Sketch-Based Image Retrieval with teacher-guided and student-centered cross-modal bidirectional knowledge distillation
    Du, Jiale
    Liu, Yang
    Gao, Xinbo
    Han, Jungong
    Zhang, Lei
    PATTERN RECOGNITION, 2025, 164
  • [24] Attention map feature fusion network for Zero-Shot Sketch-based Image Retrieval
    Zhao, Honggang
    Liu, Mingyue
    Lin, Yinghua
    Li, Mingyong
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [25] Semantically Tied Paired Cycle Consistency for Zero-Shot Sketch-based Image Retrieval
    Dutta, Anjan
    Akata, Zeynep
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5084 - 5093
  • [26] ACNet: Approaching-and-Centralizing Network for Zero-Shot Sketch-Based Image Retrieval
    Ren, Hao
    Zheng, Ziqiang
    Wu, Yang
    Lu, Hong
    Yang, Yang
    Shan, Ying
    Yeung, Sai-Kit
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 5022 - 5035
  • [27] Energy-Guided Feature Fusion for Zero-Shot Sketch-Based Image Retrieval
    Ren, Hao
    Zheng, Ziqiang
    Lu, Hong
    NEURAL PROCESSING LETTERS, 2022, 54 (06) : 5711 - 5720
  • [28] Feature Fusion and Metric Learning Network for Zero-Shot Sketch-Based Image Retrieval
    Zhao, Honggang
    Liu, Mingyue
    Li, Mingyong
    ENTROPY, 2023, 25 (03)
  • [29] OCEAN: A DUAL LEARNING APPROACH FOR GENERALIZED ZERO-SHOT SKETCH-BASED IMAGE RETRIEVAL
    Zhu, Jiawen
    Xu, Xing
    Shen, Fumin
    Lee, Roy Ka-Wei
    Wang, Zheng
    Shen, Heng Tao
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [30] Zero-Shot Sketch-Image Hashing
    Shen, Yuming
    Liu, Li
    Shen, Fumin
    Shao, Ling
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3598 - 3607