Learning to Maximize Network Bandwidth Utilization with Deep Reinforcement Learning

被引:0
|
作者
Jamil, Hasibul [1 ]
Rodrigues, Elvis [1 ]
Goldverg, Jacob [1 ]
Kosar, Tevfik [1 ]
机构
[1] SUNY Buffalo, Dept Comp Sci & Engn, Amherst, NY 14260 USA
基金
美国国家科学基金会;
关键词
Efficient network bandwidth utilization; parallel TCP streams; deep reinforcement learning; online optimization;
D O I
10.1109/GLOBECOM54140.2023.10437507
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Efficiently transferring data over long-distance, high-speed networks requires optimal utilization of available network bandwidth. One effective method to achieve this is through the use of parallel TCP streams. This approach allows applications to leverage network parallelism, thereby enhancing transfer throughput. However, determining the ideal number of parallel TCP streams can be challenging due to non-deterministic background traffic sharing the network, as well as non-stationary and partially observable network signals. We present a novel learning-based approach that utilizes deep reinforcement learning (DRL) to determine the optimal number of parallel TCP streams. Our DRL-based algorithm is designed to intelligently utilize available network bandwidth while adapting to different network conditions. Unlike rule-based heuristics, which lack generalization in unknown network scenarios, our DRL-based solution can dynamically adjust the parallel TCP stream numbers to optimize network bandwidth utilization without causing network congestion and ensuring fairness among competing transfers. We conducted extensive experiments to evaluate our DRL-based algorithm's performance and compared it with several state-of-the-art online optimization algorithms. The results demonstrate that our algorithm can identify nearly optimal solutions 40% faster while achieving up to 15% higher throughput. Furthermore, we show that our solution can prevent network congestion and distribute the available network resources fairly among competing transfers, unlike a discriminatory algorithm.
引用
收藏
页码:3711 / 3716
页数:6
相关论文
共 50 条
  • [41] Learning Navigation Policies for Mobile Robots in Deep Reinforcement Learning with Random Network Distillation
    Pan, Lifan
    Li, Anyi
    Ma, Jun
    Ji, Jianmin
    2021 5TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE (ICIAI 2021), 2021, : 151 - 157
  • [42] Deep Reinforcement Learning for Adaptive Learning Systems
    Li, Xiao
    Xu, Hanchen
    Zhang, Jinming
    Chang, Hua-hua
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2023, 48 (02) : 220 - 243
  • [43] Reinforcement learning to maximize wind turbine energy generation
    Soler, Daniel
    Marino, Oscar
    Huergo, David
    de Frutos, Martin
    Ferrer, Esteban
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [44] Dynamic Network Slice Reconfiguration by Exploiting Deep Reinforcement Learning
    Wei, Fengsheng
    Feng, Gang
    Sun, Yao
    Wang, Yatong
    Liang, Ying-Chang
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [45] Virtual Network Function Placement Optimization With Deep Reinforcement Learning
    Solozabal, Ruben
    Ceberio, Josu
    Sanchoyerto, Aitor
    Zabala, Luis
    Blanco, Bego
    Liberal, Fidel
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (02) : 292 - 303
  • [46] Deep Reinforcement Learning for Controller Placement in Software Defined Network
    Wu, Yiwen
    Zhou, Sipei
    Wei, Yunkai
    Leng, Supeng
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2020, : 1254 - 1259
  • [47] Learning to Walk via Deep Reinforcement Learning
    Haarnoja, Tuomas
    Ha, Sehoon
    Zhou, Aurick
    Tan, Jie
    Tucker, George
    Levine, Sergey
    ROBOTICS: SCIENCE AND SYSTEMS XV, 2019,
  • [48] Learning to Break Rocks With Deep Reinforcement Learning
    Samtani, Pavan
    Leiva, Francisco
    Ruiz-del-Solar, Javier
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (02) : 1077 - 1084
  • [49] Contrastive Learning Methods for Deep Reinforcement Learning
    Wang, Di
    Hu, Mengqi
    IEEE ACCESS, 2023, 11 : 97107 - 97117
  • [50] Transfer Learning in Deep Reinforcement Learning: A Survey
    Zhu, Zhuangdi
    Lin, Kaixiang
    Jain, Anil K.
    Zhou, Jiayu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (11) : 13344 - 13362