Learning to Maximize Network Bandwidth Utilization with Deep Reinforcement Learning

被引:0
|
作者
Jamil, Hasibul [1 ]
Rodrigues, Elvis [1 ]
Goldverg, Jacob [1 ]
Kosar, Tevfik [1 ]
机构
[1] SUNY Buffalo, Dept Comp Sci & Engn, Amherst, NY 14260 USA
基金
美国国家科学基金会;
关键词
Efficient network bandwidth utilization; parallel TCP streams; deep reinforcement learning; online optimization;
D O I
10.1109/GLOBECOM54140.2023.10437507
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Efficiently transferring data over long-distance, high-speed networks requires optimal utilization of available network bandwidth. One effective method to achieve this is through the use of parallel TCP streams. This approach allows applications to leverage network parallelism, thereby enhancing transfer throughput. However, determining the ideal number of parallel TCP streams can be challenging due to non-deterministic background traffic sharing the network, as well as non-stationary and partially observable network signals. We present a novel learning-based approach that utilizes deep reinforcement learning (DRL) to determine the optimal number of parallel TCP streams. Our DRL-based algorithm is designed to intelligently utilize available network bandwidth while adapting to different network conditions. Unlike rule-based heuristics, which lack generalization in unknown network scenarios, our DRL-based solution can dynamically adjust the parallel TCP stream numbers to optimize network bandwidth utilization without causing network congestion and ensuring fairness among competing transfers. We conducted extensive experiments to evaluate our DRL-based algorithm's performance and compared it with several state-of-the-art online optimization algorithms. The results demonstrate that our algorithm can identify nearly optimal solutions 40% faster while achieving up to 15% higher throughput. Furthermore, we show that our solution can prevent network congestion and distribute the available network resources fairly among competing transfers, unlike a discriminatory algorithm.
引用
收藏
页码:3711 / 3716
页数:6
相关论文
共 50 条
  • [11] Adaptive deep Q learning network with reinforcement learning for crime prediction
    Devi, J. Vimala
    Kavitha, K. S.
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (02) : 685 - 696
  • [12] Scheduling the NASA Deep Space Network with Deep Reinforcement Learning
    Goh, Edwin
    Venkataram, Hamsa Shwetha
    Hoffmann, Mark
    Johnston, Mark D.
    Wilson, Brian
    2021 IEEE AEROSPACE CONFERENCE (AEROCONF 2021), 2021,
  • [13] Predicting Bandwidth Utilization on Network Links Using Machine Learning
    Labonne, Maxime
    Chatzinakis, Charalampos
    Olivereau, Alexis
    2020 EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS (EUCNC 2020), 2020, : 242 - 247
  • [14] Accelerated deep reinforcement learning with efficient demonstration utilization techniques
    Yeo, Sangho
    Oh, Sangyoon
    Lee, Minsu
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2021, 24 (04): : 1275 - 1297
  • [15] Accelerated deep reinforcement learning with efficient demonstration utilization techniques
    Sangho Yeo
    Sangyoon Oh
    Minsu Lee
    World Wide Web, 2021, 24 : 1275 - 1297
  • [16] From Reinforcement Learning to Deep Reinforcement Learning: An Overview
    Agostinelli, Forest
    Hocquet, Guillaume
    Singh, Sameer
    Baldi, Pierre
    BRAVERMAN READINGS IN MACHINE LEARNING: KEY IDEAS FROM INCEPTION TO CURRENT STATE, 2018, 11100 : 298 - 328
  • [17] When Network Slicing meets Deep Reinforcement Learning
    Liu, Qiang
    Han, Tao
    CONEXT'19 COMPANION: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON EMERGING NETWORKING EXPERIMENTS AND TECHNOLOGIES, 2019, : 29 - 30
  • [18] Dynamic Network Slicing using Deep Reinforcement Learning
    Kumar, Swaraj
    Vankayala, Satya Kumar
    Singh, Devashish
    Roy, Ishaan
    Sahoo, Biswa P. S.
    Yoon, Seungil
    Kanakaraj, Ignatius Samuel
    2021 IEEE INTERNATIONAL CONFERENCE ON ADVANCED NETWORKS AND TELECOMMUNICATIONS SYSTEMS (IEEE ANTS), 2021,
  • [19] Deep Reinforcement Learning for Resource Management in Network Slicing
    Li, Rongpeng
    Zhao, Zhifeng
    Sun, Qi
    I, Chih-Lin
    Yang, Chenyang
    Chen, Xianfu
    Zhao, Minjian
    Zhang, Honggang
    IEEE ACCESS, 2018, 6 : 74429 - 74441
  • [20] Network Topology Optimization via Deep Reinforcement Learning
    Li, Zhuoran
    Wang, Xing
    Pan, Ling
    Zhu, Lin
    Wang, Zhendong
    Feng, Junlan
    Deng, Chao
    Huang, Longbo
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (05) : 2847 - 2859