STYLEDGPT: Stylized Response Generation with Pre-trained Language Models

被引:0
|
作者
Yang, Ze [1 ]
Wu, Wei [2 ]
Xu, Can [3 ]
Liang, Xinnian [1 ]
Bai, Jiaqi [1 ]
Wang, Liran [1 ]
Wang, Wei [4 ]
Li, Zhoujun [1 ]
机构
[1] Beihang Univ, State Key Lab Software Dev Environm, Beijing, Peoples R China
[2] Meituan, Beijing, Peoples R China
[3] Microsoft, Beijing, Peoples R China
[4] China Resources Grp, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generating responses following a desired style has great potentials to extend applications of open-domain dialogue systems, yet is refrained by lacking of parallel data for training. In this work, we explore the challenging task with pre-trained language models that have brought breakthrough to various natural language tasks. To this end, we introduce a KL loss and a style classifier to the fine-tuning step in order to steer response generation towards the target style in both a word-level and a sentence-level. Comprehensive empirical studies with two public datasets indicate that our model can significantly outperform state-of-the-art methods in terms of both style consistency and contextual coherence.
引用
收藏
页码:1548 / 1559
页数:12
相关论文
共 50 条
  • [21] Probing for Hyperbole in Pre-Trained Language Models
    Schneidermann, Nina Skovgaard
    Hershcovich, Daniel
    Pedersen, Bolette Sandford
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-SRW 2023, VOL 4, 2023, : 200 - 211
  • [22] Pre-trained language models in medicine: A survey *
    Luo, Xudong
    Deng, Zhiqi
    Yang, Binxia
    Luo, Michael Y.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 154
  • [23] Controllable Generation from Pre-trained Language Models via Inverse Prompting
    Zou, Xu
    Yin, Da
    Zhong, Qingyang
    Yang, Hongxia
    Yang, Zhilin
    Tang, Jie
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 2450 - 2460
  • [24] An Investigation of Suitability of Pre-Trained Language Models for Dialogue Generation - Avoiding Discrepancies
    Zeng, Yan
    Nie, Jian-Yun
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 4481 - 4494
  • [25] Addressing Extraction and Generation Separately: Keyphrase Prediction With Pre-Trained Language Models
    Liu, Rui
    Lin, Zheng
    Wang, Weiping
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2021, 29 : 3180 - 3191
  • [26] Attribute Alignment: Controlling Text Generation from Pre-trained Language Models
    Yu, Dian
    Yu, Zhou
    Sagae, Kenji
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, 2021, : 2251 - 2268
  • [27] A Study of Pre-trained Language Models in Natural Language Processing
    Duan, Jiajia
    Zhao, Hui
    Zhou, Qian
    Qiu, Meikang
    Liu, Meiqin
    2020 IEEE INTERNATIONAL CONFERENCE ON SMART CLOUD (SMARTCLOUD 2020), 2020, : 116 - 121
  • [28] From Cloze to Comprehension: Retrofitting Pre-trained Masked Language Models to Pre-trained Machine Reader
    Xu, Weiwen
    Li, Xin
    Zhang, Wenxuan
    Zhou, Meng
    Lam, Wai
    Si, Luo
    Bing, Lidong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [29] Pre-trained models for natural language processing: A survey
    Qiu XiPeng
    Sun TianXiang
    Xu YiGe
    Shao YunFan
    Dai Ning
    Huang XuanJing
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (10) : 1872 - 1897
  • [30] Analyzing Individual Neurons in Pre-trained Language Models
    Durrani, Nadir
    Sajjad, Hassan
    Dalvi, Fahim
    Belinkov, Yonatan
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 4865 - 4880