Second-order discontinuous ODEs and billiard problems

被引:0
|
作者
Rodriguez-Lopez, Jorge [1 ,2 ]
Tomecek, Jan [3 ]
机构
[1] Univ Santiago De Compostela, Dept Estat Analise Matemat & Optimizac, Fac Matemat, Santiago, Spain
[2] Univ Santiago De Compostela, CITMAga, Santiago, Spain
[3] Palacky Univ, Fac Sci, Dept Math Anal & Applicat Math, Olomouc, Czech Republic
关键词
Discontinuous differential equations; Differential inclusions; Impulsive differential equations; Billiard problem; Multiple solutions; Dirichlet problem; DIFFERENTIAL-EQUATIONS; DIRICHLET PROBLEM;
D O I
10.1016/j.jmaa.2024.128237
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an existence principle for boundary value problems involving discontinuous ordinary differential equations of the second order using the Krasovskii regularization technique. Especially we obtain sufficient conditions of transversality type for Krasovskii solutions to be also Caratheodory solutions of the original problem. This result is applied on a certain billiard problem, which can be thought as an ordinary differential equation with state-dependent impulses that is equivalent to certain discontinuous differential equation. In particular, we obtain new existence and multiplicity results for Dirichlet problems in billiard spaces with time-varying boundaries. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http:// creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Integrating factors for second-order ODEs
    Cheb-Terrab, ES
    Roche, AD
    JOURNAL OF SYMBOLIC COMPUTATION, 1999, 27 (05) : 501 - 519
  • [2] Nonlinear systems of second-order ODEs
    Cerda, Patricio
    Ubilla, Pedro
    BOUNDARY VALUE PROBLEMS, 2008, 2008 (1)
  • [3] Nonlinear Systems of Second-Order ODEs
    Patricio Cerda
    Pedro Ubilla
    Boundary Value Problems, 2008
  • [4] SUPERCONVERGENT DISCONTINUOUS GALERKIN METHODS FOR SECOND-ORDER ELLIPTIC PROBLEMS
    Cockburn, Bernardo
    Guzman, Johnny
    Wang, Haiying
    MATHEMATICS OF COMPUTATION, 2009, 78 (265) : 1 - 24
  • [5] Efficient methods for special second-order ODEs
    Messina, E
    Paternoster, B
    NUMERICAL ANALYSIS: METHODS AND MATHEMATICAL SOFTWARE, SUPPLEMENT, 2000, 46 : 317 - 328
  • [6] Projective connections associated with second-order ODEs
    Newman, ET
    Nurowski, P
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (11) : 2325 - 2335
  • [7] Autonomous Second-Order ODEs: A Geometric Approach
    Pan-Collantes, Antonio J.
    alvarez-Garcia, Jose Antonio
    AXIOMS, 2024, 13 (11)
  • [8] Symmetries of second-order systems of ODEs and integrability
    Ayub, Muhammad
    Mahomed, F. M.
    Khan, Masood
    Qureshi, M. N.
    NONLINEAR DYNAMICS, 2013, 74 (04) : 969 - 989
  • [9] Symmetries of second-order systems of ODEs and integrability
    Muhammad Ayub
    F. M. Mahomed
    Masood Khan
    M. N. Qureshi
    Nonlinear Dynamics, 2013, 74 : 969 - 989
  • [10] An Optimal Embedded Discontinuous Galerkin Method for Second-Order Elliptic Problems
    Zhang, Xiao
    Xie, Xiaoping
    Zhang, Shiquan
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2019, 19 (04) : 849 - 861