Symmetries of second-order systems of ODEs and integrability

被引:5
|
作者
Ayub, Muhammad [1 ]
Mahomed, F. M. [2 ]
Khan, Masood [3 ]
Qureshi, M. N. [4 ]
机构
[1] COMSATS Inst Informat Technol, Dept Math, Abbottabad, Pakistan
[2] Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Johannesburg, South Africa
[3] Quaid I Azam Univ, Dept Math, Islamabad, Pakistan
[4] Azad Jammu & Kashmir Univ, Dept Math, Muzaffarabad, Pakistan
基金
新加坡国家研究基金会;
关键词
Systems of ODEs; Canonical forms; Lie symmetries; Invariant representation; Integrability;
D O I
10.1007/s11071-013-1016-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We present a method for finding a complete set of kth-order (ka parts per thousand yen2) differential invariants including bases of invariants corresponding to vector fields in three variables of four-dimensional real Lie algebras. As a consequence, we provide a complete list of second-order differential invariants and canonical forms for vector fields of four-dimensional Lie algebras and their admitted regular systems of two second-order ODEs. Moreover, we classify invariant representations of these canonical forms of ODEs into linear, partial linear, uncoupled, and partial uncoupled cases. In addition, we give an integration procedure for invariant representations of canonical forms for regular systems of two second-order ODEs admitting four-dimensional Lie algebras.
引用
收藏
页码:969 / 989
页数:21
相关论文
共 50 条
  • [1] Symmetries of second-order systems of ODEs and integrability
    Muhammad Ayub
    F. M. Mahomed
    Masood Khan
    M. N. Qureshi
    Nonlinear Dynamics, 2013, 74 : 969 - 989
  • [2] Nonlinear systems of second-order ODEs
    Cerda, Patricio
    Ubilla, Pedro
    BOUNDARY VALUE PROBLEMS, 2008, 2008 (1)
  • [3] Second-Order Systems of ODEs Admitting Three-Dimensional Lie Algebras and Integrability
    Ayub, Muhammad
    Khan, Masood
    Mahomed, F. M.
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [4] Nonlinear Systems of Second-Order ODEs
    Patricio Cerda
    Pedro Ubilla
    Boundary Value Problems, 2008
  • [5] Symmetries of second order ODEs
    Kruglikov, Boris
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (01) : 591 - 594
  • [6] Symbolic Computation Algorithms for Second-Order ODEs by Using Two λ-Symmetries
    Mendoza, J.
    Muriel, C.
    Vidal, J.
    RECENT ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL THEORY, 2021, 9 : 65 - 82
  • [7] Invariants and invariant description of second-order ODEs with three infinitesimal symmetries. II
    Lbragimov, Nail H.
    Meleshko, Sergey V.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (06) : 1015 - 1020
  • [8] Invariants and invariant description of second-order ODEs with three infinitesimal symmetries. I
    Ibragimov, Nail H.
    Meleshko, Sergey V.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (08) : 1370 - 1378
  • [9] Branches of forced oscillations in degenerate systems of second-order ODEs
    Lewicka, Marta
    Spadini, Marco
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (09) : 2623 - 2628
  • [10] Variational symmetries of Lagrangian systems with second-order derivatives
    Coban, Ege
    Gahramanov, Ilmar
    Kosva, Dilara
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (07):