Non-Volatile Memory Based on ZnO Thin-Film Transistor with Self-Assembled Au Nanocrystals

被引:0
|
作者
Xie, Hui [1 ,2 ]
Wu, Hao [1 ,2 ,3 ]
Liu, Chang [1 ,2 ]
机构
[1] Wuhan Univ, Key Lab Artificial Micro & Nanostruct, Minist Educ, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Hubei Key Lab Nucl Solid Phys, Wuhan 430072, Peoples R China
关键词
TFT memory; NVMs; nanocrystals; SoP; ALD; OXIDE-SEMICONDUCTOR; PART I; LAYER; DESIGN;
D O I
10.3390/nano14080678
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Non-volatile memory based on thin-film transistor is crucial for system-on-panel and flexible electronic systems. Achieving high-performance and reliable thin-film transistor (TFT) memory still remains challenging. Here, for the first time, we present a ZnO TFT memory utilizing self-assembled Au nanocrystals with a low thermal budget, exhibiting excellent memory performance, including a program/erase window of 9.8 V, 29% charge loss extrapolated to 10 years, and remarkable endurance characteristics. Moreover, the memory exhibits favorable on-state characteristics with mobility, subthreshold swing, and current on-off ratio of 17.6 cm2V-1s-1, 0.71 V/dec, and 107, respectively. Our study shows that the fabricated TFT memory has great potential for practical applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Transparent thin-film transistor with self-assembled nanocrystals
    Zhang, Qiaohui
    Saraf, L. V.
    Hua, Feng
    [J]. NANOTECHNOLOGY, 2007, 18 (19)
  • [2] ZnO as a dielectric for organic thin film transistor-based non-volatile memory
    Salim, N. Tjitra
    Aw, K. C.
    Gao, W.
    Li, Z. W.
    Wright, B.
    [J]. MICROELECTRONIC ENGINEERING, 2009, 86 (10) : 2127 - 2131
  • [3] Impacts of pulse conditions on endurance behavior of ferroelectric thin-film transistor non-volatile memory
    Ma, William Cheng-Yu
    Su, Chun-Jung
    Kao, Kuo-Hsing
    Lee, Yao-Jen
    Wu, Pin-Hua
    Tseng, Hsin-Chun
    Liao, Hsu-Tang
    Chou, Yu-Wen
    Chiu, Min-Yu
    Chen, Yan-Qing
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2023, 38 (03)
  • [4] Performances of sexithiophene based thin-film transistor using self-assembled monolayers
    Collet, J
    Tharaud, O
    Legrand, C
    Chapoton, A
    Vuillaume, D
    [J]. ELECTRICAL, OPTICAL, AND MAGNETIC PROPERTIES OF ORGANIC SOLID-STATE MATERIALS IV, 1998, 488 : 407 - 412
  • [5] An organic thin film transistor based non-volatile memory with zinc oxide nanoparticles
    Lee, W. K.
    Aw, K. C.
    Wong, H. Y.
    Chan, K. Y.
    Leung, M.
    Salim, N. Tjitra
    [J]. THIN SOLID FILMS, 2011, 519 (15) : 5208 - 5211
  • [6] PLZT THIN-FILM GATE NON-VOLATILE MEMORY FET
    MATSUI, Y
    HIGUMA, Y
    OKUYAMA, M
    NAKAGAWA, T
    HAMAKAWA, Y
    [J]. FERROELECTRICS, 1978, 19 (3-4) : 166 - 166
  • [7] Memory effect of a polymer thin-film transistor with self-assembled gold nanoparticles in the gate dielectric
    Liu, Zhengchun
    Xue, Fengliang
    Su, Yi
    Lvov, Yuri M.
    Varahramyan, Kody
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2006, 5 (04) : 379 - 384
  • [8] Self-assembled non-volatile micro memory arrays of molecular ferroelectrics
    Cai, Yichen
    Zaheer, Muhammad
    Jin, Wei
    Wang, Jiao
    Shan, Yabing
    Nie, Qingmiao
    Wang, Wenchong
    Yan, Mengge
    Tian, Bobo
    Cong, Chunxiao
    Qiu, Zhi-Jun
    Liu, Ran
    Zheng, Lirong
    Hu, Laigui
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (47) : 16742 - 16748
  • [9] Non-volatile memory with self-assembled ferrocene charge trapping layer
    Zhu, Hao
    Hacker, Christina A.
    Pookpanratana, Sujitra J.
    Richter, Curt A.
    Yuan, Hui
    Li, Haitao
    Kirillov, Oleg
    Ioannou, Dimitris E.
    Li, Qiliang
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (05)
  • [10] Emerging Non-Volatile Memory and Thin-Film Transistor Technologies for Future 3D-LSI
    Saitoh, Masumi
    Fujii, Shosuke
    Oda, Minoru
    Yamaguchi, Marina
    Kabuyanagi, Shoichi
    Yoshimura, Yoko
    Ota, Kensuke
    Sakuma, Kiwamu
    Kamimuta, Yuuichi
    [J]. 2018 48TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2018, : 138 - 141