Artificial intelligence in kidney transplant pathology

被引:0
|
作者
Buelow, Roman David [1 ]
Lan, Yu-Chia [1 ]
Amann, Kerstin [2 ]
Boor, Peter [1 ,3 ,4 ]
机构
[1] Univ Klinikum RWTH Aachen, Inst Pathol, Sekt Nephropathol, Aachen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Inst Pathol, Abt Nephropathol, Univ Klinikum Erlangen, Erlangen, Germany
[3] Univ Klinikum RWTH Aachen, Med Klin II, Aachen, Germany
[4] Univ Klinikum RWTH Aachen, Inst Pathol, Sekt Nephropathol, Pauwelsstr 30, D-52074 Aachen, Germany
来源
PATHOLOGIE | 2024年 / 45卷 / 04期
基金
欧洲研究理事会;
关键词
Histomorphometry; Kidney transplantation; Deep learning; Computer assistance; Datenintegration; FIBROSIS;
D O I
10.1007/s00292-024-01324-7
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Background: Artificial intelligence (AI) systems have showed promising results in digital pathology, including digital nephropathology and specifically also kidney transplant pathology. Aim: Summarize the current state of research and limitations in the field of AI in kidney transplant pathology diagnostics and provide a future outlook. Materials and methods: Literature search in PubMed and Web of Science using the search terms "deep learning", "transplant", and "kidney". Based on these results and studies cited in the identified literature, a selection was made of studies that have a histopathological focus and use AI to improve kidney transplant diagnostics. Results and Conclusion: Many studies have already made important contributions, particularly to the automation of the quantification of some histopathological lesions in nephropathology. This likely can be extended to automatically quantify all relevant lesions for a kidney transplant, such as Banff lesions. Important limitations and challenges exist in the collection of representative data sets and the updates of Banff classification, making large-scale studies challenging. The already positive study results make future AI support in kidney transplant pathology appear likely.
引用
收藏
页码:277 / 283
页数:7
相关论文
共 50 条
  • [31] Applications of Artificial Intelligence in Breast Pathology
    Liu, Yueping
    Han, Dandan
    Parwani, Anil, V
    Li, Zaibo
    ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2023, 147 (09) : 1003 - 1013
  • [32] Systematic Analysis of Artificial Intelligence in Pathology
    Uppala, Divya
    Ogirala, Smyrna
    Gadam, Leela Lavanya
    Kumar, Tompala Vinod
    ORAL & MAXILLOFACIAL PATHOLOGY JOURNAL, 2023, 14 (01) : 142 - 144
  • [33] Artificial intelligence in pathology and laboratory medicine
    Pillay, Tahir S.
    JOURNAL OF CLINICAL PATHOLOGY, 2021, 74 (07) : 407 - 408
  • [34] Artificial intelligence and kidney transplantation
    Nurhan Seyahi
    Seyda Gul Ozcan
    World Journal of Transplantation, 2021, 11 (07) : 277 - 289
  • [35] RENAL FAILURE ARTIFICIAL KIDNEY AND KIDNEY TRANSPLANT
    KEMPH, JP
    AMERICAN JOURNAL OF PSYCHIATRY, 1966, 122 (11): : 1270 - +
  • [36] Artificial intelligence applications for pre-implantation kidney biopsy pathology practice: a systematic review
    Girolami, Ilaria
    Pantanowitz, Liron
    Marletta, Stefano
    Hermsen, Meyke
    van der Laak, Jeroen
    Munari, Enrico
    Furian, Lucrezia
    Vistoli, Fabio
    Zaza, Gianluigi
    Cardillo, Massimo
    Gesualdo, Loreto
    Gambaro, Giovanni
    Eccher, Albino
    JOURNAL OF NEPHROLOGY, 2022, 35 (07) : 1801 - 1808
  • [37] Artificial intelligence applications for pre-implantation kidney biopsy pathology practice: a systematic review
    Ilaria Girolami
    Liron Pantanowitz
    Stefano Marletta
    Meyke Hermsen
    Jeroen van der Laak
    Enrico Munari
    Lucrezia Furian
    Fabio Vistoli
    Gianluigi Zaza
    Massimo Cardillo
    Loreto Gesualdo
    Giovanni Gambaro
    Albino Eccher
    Journal of Nephrology, 2022, 35 : 1801 - 1808
  • [38] Regulating Artificial Intelligence for a Successful Pathology Future
    Allen, Timothy Craig
    ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2019, 143 (10) : 1175 - 1179
  • [39] Artificial Intelligence in Pathology: A Simple and Practical Guide
    Yao, Keluo
    Singh, Amol
    Sridhar, Kaushik
    Blau, John L.
    Ohgami, Robert S.
    ADVANCES IN ANATOMIC PATHOLOGY, 2020, 27 (06) : 385 - 393
  • [40] Toward Explainable Artificial Intelligence for Precision Pathology
    Klauschen, Frederick
    Dippel, Jonas
    Keyl, Philipp
    Jurmeister, Philipp
    Bockmayr, Michael
    Mock, Andreas
    Buchstab, Oliver
    Alber, Maximilian
    Ruff, Lukas
    Montavon, Gregoire
    Mueller, Klaus-Robert
    ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE, 2024, 19 : 541 - 570