Artificial intelligence in kidney transplant pathology

被引:0
|
作者
Buelow, Roman David [1 ]
Lan, Yu-Chia [1 ]
Amann, Kerstin [2 ]
Boor, Peter [1 ,3 ,4 ]
机构
[1] Univ Klinikum RWTH Aachen, Inst Pathol, Sekt Nephropathol, Aachen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Inst Pathol, Abt Nephropathol, Univ Klinikum Erlangen, Erlangen, Germany
[3] Univ Klinikum RWTH Aachen, Med Klin II, Aachen, Germany
[4] Univ Klinikum RWTH Aachen, Inst Pathol, Sekt Nephropathol, Pauwelsstr 30, D-52074 Aachen, Germany
来源
PATHOLOGIE | 2024年 / 45卷 / 04期
基金
欧洲研究理事会;
关键词
Histomorphometry; Kidney transplantation; Deep learning; Computer assistance; Datenintegration; FIBROSIS;
D O I
10.1007/s00292-024-01324-7
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Background: Artificial intelligence (AI) systems have showed promising results in digital pathology, including digital nephropathology and specifically also kidney transplant pathology. Aim: Summarize the current state of research and limitations in the field of AI in kidney transplant pathology diagnostics and provide a future outlook. Materials and methods: Literature search in PubMed and Web of Science using the search terms "deep learning", "transplant", and "kidney". Based on these results and studies cited in the identified literature, a selection was made of studies that have a histopathological focus and use AI to improve kidney transplant diagnostics. Results and Conclusion: Many studies have already made important contributions, particularly to the automation of the quantification of some histopathological lesions in nephropathology. This likely can be extended to automatically quantify all relevant lesions for a kidney transplant, such as Banff lesions. Important limitations and challenges exist in the collection of representative data sets and the updates of Banff classification, making large-scale studies challenging. The already positive study results make future AI support in kidney transplant pathology appear likely.
引用
收藏
页码:277 / 283
页数:7
相关论文
共 50 条
  • [21] Is pathology prepared for the adoption of artificial intelligence?
    Wong, Stephen T. C.
    CANCER CYTOPATHOLOGY, 2018, 126 (06) : 373 - 375
  • [22] Present and Future of Artificial Intelligence in Pathology
    Usta, Ufuk
    Tastekin, Ebru
    BALKAN MEDICAL JOURNAL, 2024, 41 (03) : 157 - 158
  • [23] Generative Artificial Intelligence in Anatomic Pathology
    Brodsky, Victor
    Ullah, Ehsan
    Bychkov, Andrey
    Song, Andrew H.
    Walk, Eric E.
    Louis, Peter
    Rasool, Ghulam
    Singh, Rajendra S.
    Mahmood, Faisal
    Bui, Marilyn M.
    V. Parwani, Anil
    ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2025, 149 (04) : 298 - 318
  • [24] Democratizing Artificial Intelligence in Anatomic Pathology
    Flotte, Thomas J.
    Derauf, Stephanie A.
    Byrd, Rachel K.
    Kroneman, Trynda N.
    Bell, Debra A.
    Stetzik, Lucas
    Lee, Seung-Yi
    Samiei, Alireza
    Hart, Steven N.
    Garcia, Joaquin J.
    Beamer, Gillian
    Westerling-Bui, Thomas
    ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2025, 149 (01) : 55 - 59
  • [25] Application of Artificial Intelligence in Shoulder Pathology
    Cheng, Cong
    Liang, Xinzhi
    Guo, Dong
    Xie, Denghui
    DIAGNOSTICS, 2024, 14 (11)
  • [26] Pathology training in the age of artificial intelligence
    Arora, Ananya
    Arora, Anmol
    JOURNAL OF CLINICAL PATHOLOGY, 2021, 74 (02) : 73 - 75
  • [27] Artificial intelligence for digital and computational pathology
    Andrew H. Song
    Guillaume Jaume
    Drew F. K. Williamson
    Ming Y. Lu
    Anurag Vaidya
    Tiffany R. Miller
    Faisal Mahmood
    Nature Reviews Bioengineering, 2023, 1 (12): : 930 - 949
  • [28] Artificial intelligence for biomarkers in cancer pathology
    Kather, Jakob Nikolas
    JOURNAL OF PATHOLOGY, 2024, 264 : S52 - S52
  • [29] Artificial Intelligence in the Pathology of Gastric Cancer
    Choi, Sangjoon
    Kim, Seokhwi
    JOURNAL OF GASTRIC CANCER, 2023, 23 (03) : 410 - 427
  • [30] Artificial intelligence applied to breast pathology
    Yousif, Mustafa
    van Diest, Paul J.
    Laurinavicius, Arvydas
    Rimm, David
    van der Laak, Jeroen
    Madabhushi, Anant
    Schnitt, Stuart
    Pantanowitz, Liron
    VIRCHOWS ARCHIV, 2022, 480 (01) : 191 - 209