Artificial intelligence in kidney transplant pathology

被引:0
|
作者
Buelow, Roman David [1 ]
Lan, Yu-Chia [1 ]
Amann, Kerstin [2 ]
Boor, Peter [1 ,3 ,4 ]
机构
[1] Univ Klinikum RWTH Aachen, Inst Pathol, Sekt Nephropathol, Aachen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Inst Pathol, Abt Nephropathol, Univ Klinikum Erlangen, Erlangen, Germany
[3] Univ Klinikum RWTH Aachen, Med Klin II, Aachen, Germany
[4] Univ Klinikum RWTH Aachen, Inst Pathol, Sekt Nephropathol, Pauwelsstr 30, D-52074 Aachen, Germany
来源
PATHOLOGIE | 2024年 / 45卷 / 04期
基金
欧洲研究理事会;
关键词
Histomorphometry; Kidney transplantation; Deep learning; Computer assistance; Datenintegration; FIBROSIS;
D O I
10.1007/s00292-024-01324-7
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Background: Artificial intelligence (AI) systems have showed promising results in digital pathology, including digital nephropathology and specifically also kidney transplant pathology. Aim: Summarize the current state of research and limitations in the field of AI in kidney transplant pathology diagnostics and provide a future outlook. Materials and methods: Literature search in PubMed and Web of Science using the search terms "deep learning", "transplant", and "kidney". Based on these results and studies cited in the identified literature, a selection was made of studies that have a histopathological focus and use AI to improve kidney transplant diagnostics. Results and Conclusion: Many studies have already made important contributions, particularly to the automation of the quantification of some histopathological lesions in nephropathology. This likely can be extended to automatically quantify all relevant lesions for a kidney transplant, such as Banff lesions. Important limitations and challenges exist in the collection of representative data sets and the updates of Banff classification, making large-scale studies challenging. The already positive study results make future AI support in kidney transplant pathology appear likely.
引用
收藏
页码:277 / 283
页数:7
相关论文
共 50 条
  • [1] Artificial Intelligence Advances in Transplant Pathology
    Rahman, Md Arafatur
    Yilmaz, Ibrahim
    Albadri, Sam T.
    Salem, Fadi E.
    Dangott, Bryan J.
    Taner, C. Burcin
    Nassar, Aziza
    Akkus, Zeynettin
    Alper, Cuneyt M.
    BIOENGINEERING-BASEL, 2023, 10 (09):
  • [2] Role of Artificial Intelligence in Kidney Pathology: Promises and Pitfalls
    Goodman, Kyle
    Sarullo, Kathryn
    Swamidass, S. Joshua
    Gaut, Joseph P.
    Jain, Sanjay
    KIDNEY360, 2024, 5 (07): : 1044 - 1046
  • [3] The potential of artificial intelligence-based applications in kidney pathology
    Buellow, Roman D.
    Marsh, Jon N.
    Swamidass, S. Joshua
    Gaut, Joseph P.
    Boor, Peter
    CURRENT OPINION IN NEPHROLOGY AND HYPERTENSION, 2022, 31 (03): : 251 - 257
  • [4] Artificial Intelligence in Pathology
    Cohen, Stanley
    Levenson, Richard
    Pantanowitz, Liron
    AMERICAN JOURNAL OF PATHOLOGY, 2021, 191 (10): : 1670 - 1672
  • [5] Artificial Intelligence in Pathology
    Foersch, Sebastian
    Klauschen, Frederick
    Hufnagl, Peter
    Roth, Wilfried
    DEUTSCHES ARZTEBLATT INTERNATIONAL, 2021, 118 (12): : 199 - +
  • [6] Artificial Intelligence in Pathology
    Chang, Hye Yoon
    Jung, Chan Kwon
    Woo, Junwoo Isaac
    Lee, Sanghun
    Cho, Joonyoung
    Kim, Sun Woo
    Kwak, Tae-Yeong
    JOURNAL OF PATHOLOGY AND TRANSLATIONAL MEDICINE, 2019, 53 (01) : 1 - 12
  • [7] Künstliche Intelligenz in der NierentransplantationspathologieArtificial intelligence in kidney transplant pathology
    Roman David Bülow
    Yu-Chia Lan
    Kerstin Amann
    Peter Boor
    Die Pathologie, 2024, 45 (4) : 277 - 283
  • [8] Kidney transplant pathology
    Amann, K.
    Buettner, M.
    Benz, K.
    Schoecklmann, H.
    PATHOLOGE, 2011, 32 (02): : 124 - 134
  • [9] Using Artificial Intelligence to Improve Tacrolimus Dosing in Kidney Transplant Patients
    Perez, Sean A.
    Huo, Mingjia
    Awdishu, Linda
    Pour, Hayden H.
    Kerr, Janice
    Xie, Pengtao
    Khan, Adnan A.
    Mekeel, Kristin
    Nemati, Shamim
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2024, 35 (10):
  • [10] Digital pathology and artificial intelligence
    Niazi, Muhammad Khalid Khan
    Parwani, Anil V.
    Gurcan, Metin N.
    LANCET ONCOLOGY, 2019, 20 (05): : E253 - E261