A review on charged-particle transport modeling for laser direct-drive fusion

被引:2
|
作者
Hu, S. X. [1 ,2 ,3 ]
Nichols, K. A. [1 ,2 ]
Shaffer, N. R. [1 ]
Arnold, B. [1 ]
White, A. J. [4 ]
Collins, L. A. [4 ]
Karasiev, V. V. [1 ]
Zhang, S. [1 ]
Goncharov, V. N. [1 ,3 ]
Shah, R. C. [1 ]
Mihaylov, D. I. [1 ]
Jiang, S. [5 ]
Ping, Y. [5 ]
机构
[1] Univ Rochester, Lab Laser Energet, 250 East River Rd, Rochester, NY 14623 USA
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[3] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
[4] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[5] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
EQUATION-OF-STATE; ELECTRON-TRANSPORT; THERMAL CONDUCTION; ENERGY-LOSS; DENSE; POLYSTYRENE; PLASMAS; IMPLEMENTATION; DEUTERIUM; VELOCITY;
D O I
10.1063/5.0197969
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Inertial confinement fusion (ICF) with the laser-indirect-drive scheme has recently made a tremendous breakthrough recently after decades of intensive research effort. Taking this success to the next step, the ICF community is coming to a general consensus that laser direct-drive (LDD) fusion might be the viable way for enabling inertial fusion energy (IFE) and high-gain targets for other applications. Designing and understanding LDD fusion targets heavily rely on radiation-hydrodynamic code simulations, in which charged-particle transport plays an essential role in modeling laser-target energy coupling and bootstrap heating of fusion-produced alpha-particles. To better simulate charged-particle transport in LDD targets, over the past four decades the plasma physics community has advanced transport calculations from simple plasma physics models to sophisticated computations based on first-principles methods. In this review, we give an overview of the current status of charged-particle transport modeling for LDD fusion, including what challenges we still face and the possible paths moving forward to advance transport modeling for ICF simulations. We hope this review will provide a summary of exciting challenges to stimulate young minds to enter the field, facilitate further progress in understanding warm-dense matter physics, and ultimately bridge toward the success of reliable LDD fusion designs for IFE and other high-gain ICF applications.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [41] ROLE OF INTENSE CHARGED-PARTICLE BEAMS IN FUSION
    SUDAN, RN
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 925 - 925
  • [42] Review of the second charged-particle transport coefficient code comparison workshop
    Stanek, Lucas J.
    Kononov, Alina
    Hansen, Stephanie B.
    Haines, Brian M.
    Hu, S. X.
    Knapp, Patrick F.
    Murillo, Michael S.
    Stanton, Liam G.
    Whitley, Heather D.
    Baalrud, Scott D.
    Babati, Lucas J.
    Baczewski, Andrew D.
    Bethkenhagen, Mandy
    Blanchet, Augustin
    Clay III, Raymond C.
    Cochrane, Kyle R.
    Collins, Lee A.
    Dumi, Amanda
    Faussurier, Gerald
    French, Martin
    Johnson, Zachary A.
    Karasiev, Valentin V.
    Kumar, Shashikant
    Lentz, Meghan K.
    Melton, Cody A.
    Nichols, Katarina A.
    Petrov, George M.
    Recoules, Vanina
    Redmer, Ronald
    Roepke, Gerd
    Schoerner, Maximilian
    Shaffer, Nathaniel R.
    Sharma, Vidushi
    Silvestri, Luciano G.
    Soubiran, Francois
    Suryanarayana, Phanish
    Tacu, Mikael
    Townsend, Joshua P.
    White, Alexander J.
    PHYSICS OF PLASMAS, 2024, 31 (05)
  • [43] Direct-drive target designs as energetic particle sources for the Laser MegaJoule facility
    Temporal, Mauro
    Canaud, Benoit
    Ramis, Rafael
    JOURNAL OF PLASMA PHYSICS, 2021, 87 (02)
  • [44] Review of basic physics of laser-accelerated charged-particle beams
    Suk, H.
    Hur, M. S.
    Jang, H.
    Kim, J.
    ASIAN SUMMER SCHOOL ON LASER PLASMA ACCELERATION AND RADIATION, 2007, 920 : 165 - +
  • [45] NON DETERMINISTIC METHODS FOR CHARGED-PARTICLE TRANSPORT
    BESNARD, DC
    BURESI, E
    HERMELINE, F
    WAGON, F
    LECTURE NOTES IN PHYSICS, 1985, 240 : 126 - 134
  • [46] Charged-particle transport models for global models
    Alves, L. L.
    Tejero-del-Caz, A.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2023, 32 (05):
  • [47] SYMMETRICAL SYSTEMS IN CHARGED-PARTICLE BEAM TRANSPORT
    MERRY, CM
    CORNELL, JC
    SOUTH AFRICAN JOURNAL OF PHYSICS - SUID-AFRIKAANSE TYDSKRIF VIR FISIKA, 1983, 6 (01): : 12 - 21
  • [48] THE BOLTZMAN EQUATION THEORY OF CHARGED-PARTICLE TRANSPORT
    MCMAHON, DRA
    AUSTRALIAN JOURNAL OF PHYSICS, 1983, 36 (02): : 163 - 183
  • [49] Beam final transport and direct-drive pellet implosion in heavy-ion fusion
    Someya, T
    Kawata, S
    Nakamura, T
    Ogoyski, AI
    Shimizu, K
    Sasaki, J
    FUSION SCIENCE AND TECHNOLOGY, 2003, 43 (03) : 282 - 289
  • [50] Improved modeling of the solid-to-plasma transition of polystyrene ablator for laser direct-drive inertial confinement fusion hydrocodes
    Pineau, A.
    Chimier, B.
    Hu, S. X.
    Duchateau, G.
    PHYSICAL REVIEW E, 2021, 104 (01)