A review on charged-particle transport modeling for laser direct-drive fusion

被引:2
|
作者
Hu, S. X. [1 ,2 ,3 ]
Nichols, K. A. [1 ,2 ]
Shaffer, N. R. [1 ]
Arnold, B. [1 ]
White, A. J. [4 ]
Collins, L. A. [4 ]
Karasiev, V. V. [1 ]
Zhang, S. [1 ]
Goncharov, V. N. [1 ,3 ]
Shah, R. C. [1 ]
Mihaylov, D. I. [1 ]
Jiang, S. [5 ]
Ping, Y. [5 ]
机构
[1] Univ Rochester, Lab Laser Energet, 250 East River Rd, Rochester, NY 14623 USA
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[3] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
[4] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[5] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
EQUATION-OF-STATE; ELECTRON-TRANSPORT; THERMAL CONDUCTION; ENERGY-LOSS; DENSE; POLYSTYRENE; PLASMAS; IMPLEMENTATION; DEUTERIUM; VELOCITY;
D O I
10.1063/5.0197969
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Inertial confinement fusion (ICF) with the laser-indirect-drive scheme has recently made a tremendous breakthrough recently after decades of intensive research effort. Taking this success to the next step, the ICF community is coming to a general consensus that laser direct-drive (LDD) fusion might be the viable way for enabling inertial fusion energy (IFE) and high-gain targets for other applications. Designing and understanding LDD fusion targets heavily rely on radiation-hydrodynamic code simulations, in which charged-particle transport plays an essential role in modeling laser-target energy coupling and bootstrap heating of fusion-produced alpha-particles. To better simulate charged-particle transport in LDD targets, over the past four decades the plasma physics community has advanced transport calculations from simple plasma physics models to sophisticated computations based on first-principles methods. In this review, we give an overview of the current status of charged-particle transport modeling for LDD fusion, including what challenges we still face and the possible paths moving forward to advance transport modeling for ICF simulations. We hope this review will provide a summary of exciting challenges to stimulate young minds to enter the field, facilitate further progress in understanding warm-dense matter physics, and ultimately bridge toward the success of reliable LDD fusion designs for IFE and other high-gain ICF applications.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [21] Tripled yield in direct-drive laser fusion through statistical modelling
    V. Gopalaswamy
    R. Betti
    J. P. Knauer
    N. Luciani
    D. Patel
    K. M. Woo
    A. Bose
    I. V. Igumenshchev
    E. M. Campbell
    K. S. Anderson
    K. A. Bauer
    M. J. Bonino
    D. Cao
    A. R. Christopherson
    G. W. Collins
    T. J. B. Collins
    J. R. Davies
    J. A. Delettrez
    D. H. Edgell
    R. Epstein
    C. J. Forrest
    D. H. Froula
    V. Y. Glebov
    V. N. Goncharov
    D. R. Harding
    S. X. Hu
    D. W. Jacobs-Perkins
    R. T. Janezic
    J. H. Kelly
    O. M. Mannion
    A. Maximov
    F. J. Marshall
    D. T. Michel
    S. Miller
    S. F. B. Morse
    J. Palastro
    J. Peebles
    P. B. Radha
    S. P. Regan
    S. Sampat
    T. C. Sangster
    A. B. Sefkow
    W. Seka
    R. C. Shah
    W. T. Shmyada
    A. Shvydky
    C. Stoeckl
    A. A. Solodov
    W. Theobald
    J. D. Zuegel
    Nature, 2019, 565 : 581 - 586
  • [22] Applications of a Rayleigh-Taylor model to direct-drive laser fusion
    Thomas, C.A.
    Rosenberg, M.J.
    Theobald, W.
    Knauer, J.P.
    Stoeckl, C.
    Regan, S.P.
    Collins, T.J.B.
    Goncharov, V.N.
    Betti, R.
    Froula, D.
    Deeney, C.
    Anderson, K.S.
    Bauer, K.A.
    Bonino, M.J.
    Cao, D.
    Craxton, R.S.
    Edgell, D.H.
    Epstein, R.
    Fess, S.
    Forrest, C.J.
    Glebov, V. Yu.
    Gopalaswamy, V.
    Harding, D.R.
    Igumenshchev, I.V.
    Ivancic, S.T.
    Jacobs-Perkins, D.W.
    Janezic, R.T.
    Joshi, T.
    Koch, M.
    Kwiatkowski, J.
    Lees, A.
    Marshall, F.J.
    Michalko, M.
    Morse, S.F.B.
    Patel, D.
    Peebles, J.L.
    Radha, P.B.
    Rinderknecht, H.G.
    Sampat, S.
    Sangster, T.C.
    Shah, R.C.
    Shmayda, W.T.
    Turnbull, D.
    Williams, C.A.
    Campbell, E.M.
    Christopherson, A.R.
    Tabak, M.
    Alexander, N.B.
    Farrell, M.P.
    Shuldberg, C.
    Physical Review E, 2024, 110 (04)
  • [23] Effect of fast electrons on the gain of a direct-drive laser fusion target
    Gus'kov, S. Yu
    Kuchugov, P. A.
    Yakhin, R. A.
    Zmitrenko, N., V
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (10)
  • [24] Review of the first charged-particle transport coefficient comparison workshop
    Grabowski, P. E.
    Hansen, S. B.
    Murillo, M. S.
    Stanton, L. G.
    Graziani, F. R.
    Zylstra, A. B.
    Baalrud, S. D.
    Arnault, P.
    Baczewski, A. D.
    Benedict, L. X.
    Blancard, C.
    Certik, O.
    Clerouin, J.
    Collins, L. A.
    Copeland, S.
    Correa, A. A.
    Dai, J.
    Daligault, J.
    Desjarlais, M. P.
    Dharma-wardana, M. W. C.
    Faussurier, G.
    Haack, J.
    Haxhimali, T.
    Hayes-Sterbenz, A.
    Hou, Y.
    Hu, S. X.
    Jensen, D.
    Jungman, G.
    Kagan, G.
    Kang, D.
    Kress, J. D.
    Ma, Q.
    Marciante, M.
    Meyer, E.
    Rudd, R. E.
    Saumon, D.
    Shulenburger, L.
    Singleton, R. L., Jr.
    Sjostrom, T.
    Stanek, L. J.
    Starrett, C. E.
    Ticknor, C.
    Valaitis, S.
    Venzke, J.
    White, A.
    HIGH ENERGY DENSITY PHYSICS, 2020, 37
  • [25] A direct-drive exploding-pusher implosion as the first step in development of a monoenergetic charged-particle backlighting platform at the National Ignition Facility
    Rosenberg, M. J.
    Zylstra, A. B.
    Seguin, F. H.
    Rinderknecht, H. G.
    Frenje, J. A.
    Johnson, M. Gatu
    Sio, H.
    Waugh, C. J.
    Sinenian, N.
    Li, C. K.
    Petrasso, R. D.
    LePape, S.
    Ma, T.
    Mackinnon, A. J.
    Rygg, J. R.
    Amendt, P. A.
    Bellei, C.
    Benedetti, L. R.
    Hopkins, L. Berzak
    Bionta, R. M.
    Casey, D. T.
    Divol, L.
    Edwards, M. J.
    Glenn, S.
    Glenzer, S. H.
    Hicks, D. G.
    Kimbrough, J. R.
    Landen, O. L.
    Lindl, J. D.
    MacPhee, A.
    McNaney, J. M.
    Meezan, N. B.
    Moody, J. D.
    Moran, M. J.
    Park, H-S.
    Pino, J.
    Remington, B. A.
    Robey, H.
    Rosen, M. D.
    Wilks, S. C.
    Zacharias, R. A.
    McKenty, P. W.
    Hohenberger, M.
    Radha, P. B.
    Edgell, D.
    Marshall, F. J.
    Delettrez, J. A.
    Glebov, V. Yu.
    Betti, R.
    Goncharov, V. N.
    HIGH ENERGY DENSITY PHYSICS, 2016, 18 : 38 - 44
  • [26] High-gain direct-drive laser fusion with indirect drive beam layout of Laser Megajoule
    Canaud, B.
    Garaude, F.
    Clique, C.
    Lecler, N.
    Masson, A.
    Quach, R.
    Van der Vliet, J.
    NUCLEAR FUSION, 2007, 47 (12) : 1652 - 1655
  • [27] VARIATIONAL APPROACH TO CHARGED-PARTICLE TRANSPORT
    LERCHE, I
    ASTROPHYSICAL JOURNAL, 1974, 193 (03): : 711 - 719
  • [28] ADJOINT CHARGED-PARTICLE TRANSPORT METHOD
    JORDAN, TM
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1976, 23 (06) : 1857 - 1861
  • [29] OPTIMUM TRANSPORT IN CHARGED-PARTICLE ANALYZERS
    WANG, KL
    JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1972, 5 (12): : 1193 - &
  • [30] PERTURBATION APPROXIMATION TO CHARGED-PARTICLE TRANSPORT
    WILSON, JW
    LAMKIN, SL
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1974, 19 (OCT27): : 443 - 443