FREQUENCY-EXPLICIT A POSTERIORI ERROR ESTIMATES FOR DISCONTINUOUS GALERKIN DISCRETIZATIONS OF MAXWELL'S EQUATIONS

被引:0
|
作者
Chaumont-Frelet, Theophile [1 ]
Vega, Patrick [2 ]
机构
[1] Univ Cote dAzur, Inria, CNRS, LJAD, F-06902 Antipolis, France
[2] Univ Santiago Chile, Dept Matemat & Ciencia Comp, Santiago, Chile
关键词
a posteriori error estimates; discontinuous Galerkin methods; high-frequency prob- lems; Maxwell's equations; PERFECTLY MATCHED LAYER; CONVERGENCE; ABSORPTION;
D O I
10.1137/22M1516348
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new residual-based a posteriori error estimator for discontinuous Galerkin discretizations of time-harmonic Maxwell's equations in first-order form. We establish that the estimator is reliable and efficient, and the dependency of the reliability and efficiency constants on the frequency is analyzed and discussed. The proposed estimates generalize similar results previously obtained for the Helmholtz equation and conforming finite element discretizations of Maxwell's equations. In addition, for the discontinuous Galerkin scheme considered here, we also show that the proposed estimator is asymptotically constant-free for smooth solutions.
引用
收藏
页码:400 / 421
页数:22
相关论文
共 50 条
  • [21] GOAL ORIENTED A POSTERIORI ERROR ESTIMATES FOR THE DISCONTINUOUS GALERKIN METHOD
    Dolejsi, Vit
    Roskovec, Filip
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 18, 2017, : 15 - 23
  • [22] ON A POSTERIORI ERROR ESTIMATES FOR SPACE TIME DISCONTINUOUS GALERKIN METHOD
    Dolejsi, Vit
    Roskovec, Filip
    Vlasak, Miloslav
    PROCEEDINGS OF THE CONFERENCE ALGORITMY 2016, 2016, : 125 - 134
  • [23] A posteriori error estimates for discontinuous Galerkin methods of obstacle problems
    Wang, Fei
    Han, Weimin
    Eichholz, Joseph
    Cheng, Xiaoliang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 664 - 679
  • [24] Guaranteed A Posteriori Error Estimates for a Staggered Discontinuous Galerkin Method
    Eric T. Chung
    Eun-Jae Park
    Lina Zhao
    Journal of Scientific Computing, 2018, 75 : 1079 - 1101
  • [25] IMPLICIT RUNGE-KUTTA METHODS AND DISCONTINUOUS GALERKIN DISCRETIZATIONS FOR LINEAR MAXWELL'S EQUATIONS
    Hochbruck, Marlis
    Pazur, Tomislav
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 485 - 507
  • [26] A POSTERIORI ERROR ESTIMATES FOR A DISCONTINUOUS GALERKIN APPROXIMATION OF STEKLOV EIGENVALUE PROBLEMS
    Zeng, Yuping
    Wang, Feng
    APPLICATIONS OF MATHEMATICS, 2017, 62 (03) : 243 - 267
  • [27] A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems
    Yuping Zeng
    Feng Wang
    Applications of Mathematics, 2017, 62 : 243 - 267
  • [28] Functional A Posteriori Error Estimates for Discontinuous Galerkin Approximations of Elliptic Problems
    Lazarov, Raytcho
    Repin, Sergey
    Tomar, Satyendra K.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (04) : 952 - 971
  • [29] A posteriori error estimates for local discontinuous Galerkin methods of linear elasticity
    Chen, Yun-Cheng
    Huang, Jian-Guo
    Xu, Yi-Feng
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2011, 45 (12): : 1857 - 1862
  • [30] A POSTERIORI ERROR ESTIMATES FOR DISCONTINUOUS GALERKIN METHODS ON POLYGONAL AND POLYHEDRAL MESHES
    Cangiani, Andrea
    Dong, Zhaonan
    Georgoulis, Emmanuil H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (05) : 2352 - 2380