Insights into hydrogen and methane storage capacities: Grand canonical Monte Carlo simulations of SIGSUA

被引:0
|
作者
Granja-DelRio, A. [1 ]
Cabria, I. [1 ]
机构
[1] Univ Valladolid, Dept Fis Teor Atom & Opt, ES-47011 Valladolid, Spain
来源
JOURNAL OF CHEMICAL PHYSICS | 2024年 / 160卷 / 15期
关键词
METAL-ORGANIC FRAMEWORKS; ROOM-TEMPERATURE; NATURAL-GAS; ADSORPTION; CARBON; MOFS; DESIGN; OXIDE; STATE; ENHANCEMENT;
D O I
10.1063/5.0193291
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the pursuit of sustainable energy solutions, the development of materials with efficient hydrogen and methane storage capacities is imperative, particularly for advancing hydrogen-powered vehicles. Metal-organic frameworks (MOFs) have emerged as promising candidates to meet the stringent targets set by the Department of Energy for both hydrogen and methane storage. This study employs Grand Canonical Monte Carlo simulations to investigate the usable hydrogen and methane gravimetric and volumetric storage capacities of the recently synthesized SIGSUA. A comparative analysis encompasses the selected MOFs with similar metal compositions, those with comparable density and average pore radius, and classical benchmarks, such as IRMOF-15 and IRMOF-20, all evaluated at room temperature and moderate pressures ranging from 25 to 35 MPa. The results reveal that SIGSUA demonstrates noteworthy gravimetric and volumetric storage capacities for both hydrogen and methane, rivaling or surpassing those of the selected MOFs for analysis. These findings underscore the potential of SIGSUA in advancing clean energy storage technologies.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] MXene Electrode Materials for Electrochemical Energy Storage: First-Principles and Grand Canonical Monte Carlo Simulations
    Yasuaki Okada
    Nathan Keilbart
    James M. Goff
    Shin’ichi Higai
    Kosuke Shiratsuyu
    Ismaila Dabo
    MRS Advances, 2019, 4 : 1833 - 1841
  • [42] MXene Electrode Materials for Electrochemical Energy Storage: First-Principles and Grand Canonical Monte Carlo Simulations
    Okada, Yasuaki
    Keilbart, Nathan
    Goff, James M.
    Higai, Shin'ichi
    Shiratsuyu, Kosuke
    Dabo, Ismaila
    MRS ADVANCES, 2019, 4 (33-34) : 1833 - 1841
  • [43] ISIM: A program for grand canonical Monte Carlo simulations of the ionic environment of biomolecules
    Vitalis, A
    Baker, NA
    McCammon, JA
    MOLECULAR SIMULATION, 2004, 30 (01) : 45 - 61
  • [44] Nature of non-commensurate variables in grand canonical Monte Carlo simulations
    Laratelli, Luciano
    Hogan, Adam
    Mulcair, Meagan
    Space, Brian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [45] Grand Canonical Monte Carlo simulations for energy gases and silicalite-1
    Zhao, Liang
    Zhai, Dong
    Liu, Bei
    Liu, Zhichang
    Xu, Chumming
    Wei, Wei
    Chen, Yu
    Gao, Jinsen
    CHEMICAL ENGINEERING SCIENCE, 2012, 68 (01) : 101 - 107
  • [46] Ammonia Clathrate Hydrate As Seen from Grand Canonical Monte Carlo Simulations
    Fabian, Balazs
    Picaud, Sylvain
    Jedlovszky, Pal
    Guilbert-Lepoutre, Aurelie
    Mousis, Olivier
    ACS EARTH AND SPACE CHEMISTRY, 2018, 2 (05): : 521 - 531
  • [47] Acceleration of Monte Carlo simulations through spatial updating in the grand canonical ensemble
    Orkoulas, G.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (08):
  • [48] Automatic control of solvent density in grand canonical ensemble Monte Carlo simulations
    Speidel, Joshua A.
    Banfelder, Jason R.
    Mezei, Mihaly
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2006, 2 (05) : 1429 - 1434
  • [49] Validating the Water Flooding Approach by Comparing It to Grand Canonical Monte Carlo Simulations
    Yoon, Hanwool
    Kolev, Vesselin
    Warshel, Arieh
    JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (40): : 9358 - 9365
  • [50] Pivot-coupled grand canonical Monte Carlo method for ring simulations
    Kindt, JT
    JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (15): : 6817 - 6825