Insights into hydrogen and methane storage capacities: Grand canonical Monte Carlo simulations of SIGSUA

被引:0
|
作者
Granja-DelRio, A. [1 ]
Cabria, I. [1 ]
机构
[1] Univ Valladolid, Dept Fis Teor Atom & Opt, ES-47011 Valladolid, Spain
来源
JOURNAL OF CHEMICAL PHYSICS | 2024年 / 160卷 / 15期
关键词
METAL-ORGANIC FRAMEWORKS; ROOM-TEMPERATURE; NATURAL-GAS; ADSORPTION; CARBON; MOFS; DESIGN; OXIDE; STATE; ENHANCEMENT;
D O I
10.1063/5.0193291
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the pursuit of sustainable energy solutions, the development of materials with efficient hydrogen and methane storage capacities is imperative, particularly for advancing hydrogen-powered vehicles. Metal-organic frameworks (MOFs) have emerged as promising candidates to meet the stringent targets set by the Department of Energy for both hydrogen and methane storage. This study employs Grand Canonical Monte Carlo simulations to investigate the usable hydrogen and methane gravimetric and volumetric storage capacities of the recently synthesized SIGSUA. A comparative analysis encompasses the selected MOFs with similar metal compositions, those with comparable density and average pore radius, and classical benchmarks, such as IRMOF-15 and IRMOF-20, all evaluated at room temperature and moderate pressures ranging from 25 to 35 MPa. The results reveal that SIGSUA demonstrates noteworthy gravimetric and volumetric storage capacities for both hydrogen and methane, rivaling or surpassing those of the selected MOFs for analysis. These findings underscore the potential of SIGSUA in advancing clean energy storage technologies.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Canonical and grand canonical ensemble expectation values from quantum Monte Carlo simulations
    Sedgewick, RD
    Scalapino, DJ
    Sugar, RL
    Capriotti, L
    PHYSICAL REVIEW B, 2003, 68 (04)
  • [32] ON THE SAMPLING METHOD FOR GRAND-CANONICAL MONTE-CARLO SIMULATIONS
    CRACKNELL, RF
    MOLECULAR SIMULATION, 1994, 13 (03) : 235 - 240
  • [33] Determination of second virial coefficients by grand canonical Monte Carlo simulations
    Moghaddam, S
    Panagiotopoulos, AZ
    FLUID PHASE EQUILIBRIA, 2004, 222 : 221 - 224
  • [34] Reactive Monte Carlo and grand-canonical Monte Carlo simulations of the propene metathesis reaction system
    Hansen, N
    Jakobtorweihen, S
    Keil, FJ
    JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (16):
  • [35] Molecular exchange Monte Carlo: A generalized method for identity exchanges in grand canonical Monte Carlo simulations
    Barhaghi, Mohammad Soroush
    Torabi, Korosh
    Nejahi, Younes
    Schwiebert, Loren
    Potoff, Jeffrey J.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (07):
  • [36] A density functional theory and grand canonical Monte Carlo simulations study the hydrogen storage on the Li-decorated net-t
    Shi, Mingmin
    Wu, Qiang
    Huang, Xin
    Meng, Zhaoshun
    Wang, Yunhui
    Yang, Zhihong
    Hu, Jing
    Xu, Yi
    Zhao, Huaihong
    Yan, Gang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (42) : 21965 - 21972
  • [37] Schwarzites for Natural Gas Storage: A Grand - Canonical Monte Carlo Study
    Borges, Daiane Damasceno
    Galvao, Douglas S.
    MRS ADVANCES, 2018, 3 (1-2): : 115 - 120
  • [38] Grand canonical Monte Carlo simulation study of hydrogen storage in ordered mesoporous carbons at 303 K
    Kowalczyk, Piotr
    Jaroniec, Mietek
    Solarz, Lech
    Terzyk, Artur P.
    Gauden, Piotr A.
    ADSORPTION SCIENCE & TECHNOLOGY, 2006, 24 (05) : 411 - 426
  • [39] Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation
    Kowalczyk, P
    Tanaka, H
    Holyst, R
    Kaneko, K
    Ohmori, T
    Miyamoto, J
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (36): : 17174 - 17183
  • [40] Grand canonical Monte Carlo simulation of methane adsorbed in layered pillared pores
    Cao, DP
    Wang, WC
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2001, 3 (15) : 3150 - 3155