Congestion Management Using K-Means for Mobile Edge Computing 5G System

被引:0
|
作者
Ismail, Alshimaa H. [1 ]
Ali, Zainab H. [2 ]
Abdellatef, Essam [3 ]
Sakr, Noha A. [4 ]
Sedhom, Germien G. [5 ]
机构
[1] Tanta Univ, Fac Comp & Informat, Informat Technol Dept, Tanta 31527, Egypt
[2] Kafrelsheikh Univ, Fac Artificial Intelligence, Embedded Network Syst & Technol Dept, Kafrelsheikh, Egypt
[3] Sinai Univ, Fac Engn, Dept Elect Engn, Al Arish 45511, Egypt
[4] Mansoura Univ, Fac Engn, Comp Engn & Control Syst Dept, Mansoura 35516, Egypt
[5] Delta Higher Inst Engn & Technol, Dept Commun & Elect Engn, Mansoura 35111, Egypt
关键词
Congestion control; AGCM; Mobile edge computing; Fog computing; K-means; 5G; ACTIVE QUEUE MANAGEMENT; DESIGN; CONTROLLERS;
D O I
10.1007/s11277-024-11313-x
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The congestion management mechanism is essential to manage the explosive evolution of data traffic associated with advanced applications and services in the 5G system. As a result, we suggest a novel methodology to manage congestion for mobile edge computing in the 5G system. Furthermore, the proposed model enhances delay, energy consumption, and throughput. The enhanced random early detection strategy and the K-means approach are used in the suggested model to execute this. Also, a virtual list is realized to maintain packet information and suit more packets. The proposed model is realized in NS2 green cloud simulator. In comparison with the traditional cloud model and the fog computing model, the simulation results confirm that the proposed model reduces delay, boosts throughput, and decreases energy consumption.
引用
收藏
页码:2105 / 2124
页数:20
相关论文
共 50 条
  • [21] SDN, NFV, and Mobile Edge Computing with QoE Support for 5G
    Jararweh, Yaser
    Mavromoustakis, Constandinos
    Rawat, Danda B.
    Rehmani, Mubashir Husain
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2018, 29 (11):
  • [22] Admission Control with Latency Considerations for 5G Mobile Edge Computing
    Zhang, Ye
    Li, Wuyungerile
    Seah, Winston K. G.
    2023 IEEE 24TH INTERNATIONAL SYMPOSIUM ON A WORLD OF WIRELESS, MOBILE AND MULTIMEDIA NETWORKS, WOWMOM, 2023, : 167 - 174
  • [23] Algorithm for 5G Resource Management Optimization in Edge Computing
    Lieira, Douglas Dias
    Quessada, Matheus Sanches
    Cristiani, Andre Luis
    Meneguette, Rodolfo Ipolito
    IEEE LATIN AMERICA TRANSACTIONS, 2021, 19 (10) : 1772 - 1780
  • [24] Edge Computing in 5G: A Review
    Hassan, Najmul
    Yau, Kok-Lim Alvin
    Wu, Celimuge
    IEEE ACCESS, 2019, 7 : 127276 - 127289
  • [25] Industrial Intelligent Edge Computing System based on 5G
    Ding, Peng
    Liu, Dan
    Shen, Yun
    Shi, XiaoHou
    Zhou, HengRui
    Kan, HaoLong
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 1494 - 1498
  • [26] 基于K-means算法的5G价值用户分析
    叶健涛
    徐锋
    陈广林
    梁盛铭
    张紫轩
    广西通信技术, 2022, (01) : 37 - 40
  • [27] Research on Interference from 5G System to NGSO Satellite Constellation Based on K-means Clustering
    Li, Linghui
    Li, Wei
    Ren, Zixuan
    Jin, Jin
    Kuang, Linling
    SPACE INFORMATION NETWORK, SINC 2020, 2021, 1353 : 1 - 17
  • [28] The deployment of smart sharing stadium based on 5G and mobile edge computing
    Fang, Lei
    WIRELESS NETWORKS, 2024, 30 (05) : 4121 - 4131
  • [29] Energy-Efficient Caching for Mobile Edge Computing in 5G Networks
    Luo, Zhaohui
    LiWang, Minghui
    Lin, Zhijian
    Huang, Lianfen
    Du, Xiaojiang
    Guizani, Mohsen
    APPLIED SCIENCES-BASEL, 2017, 7 (06):
  • [30] NFVMon: Enabling Multioperator Flow Monitoring in 5G Mobile Edge Computing
    Chirivella-Perez, Enrique
    Gutierrez-Aguado, Juan
    Alcaraz-Calero, Jose M.
    Wang, Qi
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2018,