Assessment of Machine Learning Algorithms for Land Cover Classification in a Complex Mountainous Landscape

被引:5
|
作者
Amin, Gomal [1 ,2 ]
Imtiaz, Iqra [1 ]
Haroon, Ehsan [1 ]
Saqib, Najum Us [3 ]
Shahzad, Muhammad Imran [1 ]
Nazeer, Majid [2 ,4 ]
机构
[1] COMSATS Univ Islamabad, Dept Meteorol, Earth & Atmospher Remote Sensing Lab EARL, Islamabad 45550, Pakistan
[2] Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Hong Kong, Peoples R China
[3] Quaid I Azam Univ, Dept Environm Sci, Islamabad 15320, Pakistan
[4] Hong Kong Polytech Univ, Res Inst Land & Space, Hong Kong, Peoples R China
关键词
Supervised classification; Sentinel-2; data; Land cover classification; Gilgit-Baltistan; Google Earth Engine; NEURAL-NETWORK; RANDOM FORESTS; PAKISTAN; HIMALAYAS; SYSTEM; CART; GIS;
D O I
10.1007/s41651-024-00195-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mapping land cover (LC) in mountainous regions, such as the Gilgit-Baltistan (GB) area of Pakistan, presents significant challenges due to complex terrain, limited data availability, and accessibility constraints. This study addresses these challenges by developing a robust, data-driven approach to classify LC using high-resolution Sentinel-2 (S-2) satellite imagery from 2019 within Google Earth Engine (GEE). The research evaluated the performance of various machine learning (ML) algorithms, including classification and regression tree (CART), maximum entropy (gmoMaxEnt), minimum distance (minDistance), support vector machine (SVM), and random forest (RF), without extensive hyperparameter tuning. Additionally, ten different scenarios based on various band combinations of S-2 data were used as input for running the ML models. The LC classification was performed using 2759 sample points, with 70% for training and 30% for validation. The results indicate that the RF algorithm outperformed all other classifiers under scenario S1 (using 10 bands), achieving an overall accuracy (OA) of 0.79 and a kappa coefficient of 0.76. The final RF-based LC mapping shows the following percentage distribution: barren land (46.7%), snow cover (22.9%), glacier (7.9%), grasses (7.2%), water (4.7%), wetland (2.9%), built-up (2.7%), agriculture (1.9%), and forest (1.2%). It is suggested that the best identified RF classifier within the GEE environment should be used for advanced multi-source data image classification with hyperparameter tuning to increase OA. Additionally, it is suggested to build the capacity of various stakeholders in GB for better monitoring of LC changes and resource management using geospatial big data.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Assessment of Machine Learning Algorithms for Land Cover Classification Using Remotely Sensed Data
    Park, Jeongmook
    Lee, Yongkyu
    Lee, Jungsoo
    SENSORS AND MATERIALS, 2021, 33 (11) : 3885 - 3902
  • [2] Classification of land use and land cover through machine learning algorithms: a literature review
    Tobar-Diaz, Rene
    Gao, Yan
    Mas, Jean Francois
    Cambron-Sandoval, Victor Hugo
    REVISTA DE TELEDETECCION, 2023, (62): : 1 - 19
  • [3] Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data
    Abdi, Abdulhakim Mohamed
    GISCIENCE & REMOTE SENSING, 2020, 57 (01) : 1 - 20
  • [4] Land use and land cover classification using machine learning algorithms in google earth engine
    Arpitha, M.
    Ahmed, S. A.
    Harishnaika, N.
    EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3057 - 3073
  • [5] Land use and land cover classification using machine learning algorithms in google earth engine
    Arpitha M
    S A Ahmed
    Harishnaika N
    Earth Science Informatics, 2023, 16 : 3057 - 3073
  • [6] Land Use/Land Cover Classification Using Machine Learning and Deep Learning Algorithms for EuroSAT Dataset - A Review
    Loganathan, Agilandeeswari
    Koushmitha, Suri
    Arun, Yerru Nanda Krishna
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, ISDA 2021, 2022, 418 : 1363 - 1374
  • [7] Correction to: Land use and land cover classification using machine learning algorithms in google earth engine
    Arpitha M
    S A Ahmed
    N Harishnaika
    Earth Science Informatics, 2023, 16 : 3075 - 3075
  • [8] Land use and land cover classification using GEE and machine learning algorithms: a case study of Vaijapur Tehsil
    Symbiosis Institute of Computer Studies and Research , Symbiosis International , Pune
    411016, MH, India
    不详
    402103, MH, India
    Proc SPIE Int Soc Opt Eng,
  • [9] Assessing Machine Learning Algorithms for Land Use and Land Cover Classification in Morocco Using Google Earth Engine
    Ouchra, Hafsa
    Belangour, Abdessamad
    Erraissi, Allae
    Banane, Mouad
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2023 WORKSHOPS, PT I, 2024, 14365 : 395 - 405
  • [10] Detailed and automated classification of land use/land cover using machine learning algorithms in Google Earth Engine
    Pan, Xia
    Wang, Zhenyi
    Gao, Yong
    Dang, Xiaohong
    Han, Yanlong
    GEOCARTO INTERNATIONAL, 2022, 37 (18) : 5415 - 5432