Deep Learning for Frame Error Prediction Using a DARPA Spectrum Collaboration Challenge (SC2) Dataset

被引:0
|
作者
Jameel, Abu Shafin Mohammad Mahdee [1 ]
Mohamed, Ahmed P. [1 ]
Zhang, Xiwen [1 ]
Gamal, Aly El [1 ]
机构
[1] School of Electrical and Computer Engineering, Purdue University, West Lafayette,IN,47906, United States
来源
IEEE Networking Letters | 2021年 / 3卷 / 03期
关键词
Deep neural networks - Signal to noise ratio - Errors - Wireless networks - Forecasting;
D O I
暂无
中图分类号
学科分类号
摘要
We demonstrate a first example for employing deep learning in predicting frame errors for a Collaborative Intelligent Radio Network (CIRN) using a dataset collected during participation in the final scrimmages of the DARPA SC2 challenge. Four scenarios are considered based on randomizing or fixing the strategy for bandwidth and channel allocation, and either training and testing with different links or using a pilot phase for each link to train the deep neural network. We also investigate the effect of latency constraints, and uncover interesting characteristics of the predictor over different Signal to Noise Ratio (SNR) ranges. The obtained insights open the door for implementing a deep-learning-based strategy that is scalable to large heterogeneous networks, generalizable to diverse wireless environments, and suitable for predicting frame error instances and rates within a congested shared spectrum. © 2019 IEEE.
引用
收藏
页码:133 / 137
相关论文
共 50 条
  • [31] Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography
    Leclerc, Sarah
    Smistad, Erik
    Pedrosa, Joao
    Ostvik, Andreas
    Cervenansky, Frederic
    Espinosa, Florian
    Espeland, Torvald
    Berg, Erik Andreas Rye
    Jodoin, Pierre-Marc
    Grenier, Thomas
    Lartizien, Carole
    D'hooge, Jan
    Lovstakken, Lasse
    Bernard, Olivier
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (09) : 2198 - 2210
  • [32] A novel GDP prediction technique based on transfer learning using CO2 emission dataset
    Kumar, Sandeep
    Muhuri, Pranab K.
    [J]. APPLIED ENERGY, 2019, 253
  • [33] A comparative study of vehicle frame load spectrum extraction using SA-1DCNN deep learning and virtual iteration
    Chen, Weihuan
    Zhao, Junhui
    Yu, Xianzhong
    Zeng, Jianbang
    Zhao, Minqing
    [J]. Journal of Mechanical Science and Technology, 2024, 38 (10) : 5297 - 5309
  • [34] Learn2Reg: Comprehensive Multi-Task Medical Image Registration Challenge, Dataset and Evaluation in the Era of Deep Learning
    Hering, Alessa
    Hansen, Lasse
    Mok, Tony C. W.
    Chung, Albert C. S.
    Siebert, Hanna
    Hager, Stephanie
    Lange, Annkristin
    Kuckertz, Sven
    Heldmann, Stefan
    Shao, Wei
    Vesal, Sulaiman
    Rusu, Mirabela
    Sonn, Geoffrey
    Estienne, Theo
    Vakalopoulou, Maria
    Han, Luyi
    Huang, Yunzhi
    Yap, Pew-Thian
    Brudfors, Mikael
    Balbastre, Yael
    Joutard, Samuel
    Modat, Marc
    Lifshitz, Gal
    Raviv, Dan
    Lv, Jinxin
    Li, Qiang
    Jaouen, Vincent
    Visvikis, Dimitris
    Fourcade, Constance
    Rubeaux, Mathieu
    Pan, Wentao
    Xu, Zhe
    Jian, Bailiang
    De Benetti, Francesca
    Wodzinski, Marek
    Gunnarsson, Niklas
    Sjolund, Jens
    Grzech, Daniel
    Qiu, Huaqi
    Li, Zeju
    Thorley, Alexander
    Duan, Jinming
    Grossbroehmer, Christoph
    Hoopes, Andrew
    Reinertsen, Ingerid
    Xiao, Yiming
    Landman, Bennett
    Huo, Yuankai
    Murphy, Keelin
    Lessmann, Nikolas
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (03) : 697 - 712
  • [35] Prediction of surface morphology and reflection spectrum of laser-induced periodic surface structures using deep learning
    Na, Hojun
    Yoo, Jeonghyun
    Ki, Hyungson
    [J]. JOURNAL OF MANUFACTURING PROCESSES, 2022, 84 : 1274 - 1283
  • [36] Affinity prediction using deep learning based on SMILES input for D3R grand challenge 4
    Sangrak Lim
    Yong Oh Lee
    Juyong Yoon
    Young Jun Kim
    [J]. Journal of Computer-Aided Molecular Design, 2022, 36 : 225 - 235
  • [37] Affinity prediction using deep learning based on SMILES input for D3R grand challenge 4
    Lim, Sangrak
    Lee, Yong Oh
    Yoon, Juyong
    Kim, Young Jun
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2022, 36 (03) : 225 - 235
  • [38] Author Correction: Radiomics and deep learning methods for the prediction of 2-year overall survival in LUNG1 dataset
    Anna Braghetto
    Francesca Marturano
    Marta Paiusco
    Marco Baiesi
    Andrea Bettinelli
    [J]. Scientific Reports, 13
  • [39] Classification of Malware Programs using Autoencoders based Deep Learning Architecture and its Application to the Microsoft Malware Classification Challenge (BIG 2015) Dataset
    Kebede, Temesguen Messay
    Djaneye-Boundjou, Ouboti
    Narayanan, Barath Narayanan
    Ralescu, Anca
    Kapp, David
    [J]. 2017 IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON), 2017, : 70 - 75
  • [40] Deep learning-based seizure prediction using EEG signals: A comparative analysis of classification methods on the CHB-MIT dataset
    Esmaeilpour, Ali
    Tabarestani, Shaghayegh Shahiri
    Niazi, Alireza
    [J]. ENGINEERING REPORTS, 2024,