Learn2Reg: Comprehensive Multi-Task Medical Image Registration Challenge, Dataset and Evaluation in the Era of Deep Learning

被引:50
|
作者
Hering, Alessa [1 ,2 ]
Hansen, Lasse [3 ]
Mok, Tony C. W. [4 ]
Chung, Albert C. S. [4 ]
Siebert, Hanna [3 ]
Hager, Stephanie [5 ]
Lange, Annkristin [5 ]
Kuckertz, Sven [5 ]
Heldmann, Stefan [5 ]
Shao, Wei [6 ]
Vesal, Sulaiman [7 ]
Rusu, Mirabela [6 ]
Sonn, Geoffrey [7 ]
Estienne, Theo [8 ]
Vakalopoulou, Maria [9 ]
Han, Luyi [1 ]
Huang, Yunzhi [10 ]
Yap, Pew-Thian [11 ]
Brudfors, Mikael [12 ]
Balbastre, Yael [13 ,14 ]
Joutard, Samuel [15 ]
Modat, Marc [15 ]
Lifshitz, Gal [16 ]
Raviv, Dan [16 ]
Lv, Jinxin [17 ]
Li, Qiang [17 ]
Jaouen, Vincent [18 ]
Visvikis, Dimitris [18 ]
Fourcade, Constance [19 ]
Rubeaux, Mathieu [20 ]
Pan, Wentao [21 ]
Xu, Zhe [22 ]
Jian, Bailiang [23 ]
De Benetti, Francesca [23 ]
Wodzinski, Marek [24 ,25 ]
Gunnarsson, Niklas [26 ,27 ]
Sjolund, Jens [26 ,27 ]
Grzech, Daniel [28 ]
Qiu, Huaqi [28 ]
Li, Zeju [28 ]
Thorley, Alexander [29 ]
Duan, Jinming [29 ,30 ]
Grossbroehmer, Christoph [3 ]
Hoopes, Andrew [13 ]
Reinertsen, Ingerid [31 ]
Xiao, Yiming [32 ]
Landman, Bennett [33 ]
Huo, Yuankai [33 ]
Murphy, Keelin [1 ]
Lessmann, Nikolas [1 ]
机构
[1] Radboud Univ Nijmegen, Dept Radiol & Nucl Med, Med Ctr, NL-6525 GA Nijmegen, Netherlands
[2] Fraunhofer MEVIS, Inst Digital Med, D-28359 Bremen, Germany
[3] Univ Lubeck, Inst Med Informat, D-23562 Lubeck, Germany
[4] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[5] Fraunhofer MEVIS, Inst Digital Med, D-23562 Lubeck, Germany
[6] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[7] Stanford Univ, Dept Urol, Stanford, CA 94305 USA
[8] Univ Paris Saclay, Inst Gustave Roussy, Math & Informat Complex & Syst, Cent Supelec,Inria Saclay,Inserm,Radiotherapie Mo, F-91190 Gif Sur Yvette, France
[9] Univ Paris Saclay, Cent Supelec, Mathemat & Informat Complex & Syst, Inria Saclay, F-91190 Gif Sur Yvette, France
[10] Nanjing Univ Informat Sci & Technol, Sch Automat, Nanjing 211544, Peoples R China
[11] Univ N Carolina, Dept Radiol & Biomed Res Imaging Ctr, Chapel Hill, NC 28804 USA
[12] NVIDIA, Reading RG2 6UJ, Berks, England
[13] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02114 USA
[14] Harvard Med Sch, Boston, MA 02115 USA
[15] Kings Coll London, Dept Biomed Engn, London WC2R 2LS, England
[16] Tel Aviv Univ, Fac Engn, Sch Elect Engn, IL-69978 Tel Aviv, Israel
[17] Huazhong Univ Sci & Technol, Collaborat Innovat Ctr Biomed Engn, Wuhan Natl Lab Optoelect Huazhong Univ Sci & Tech, Wuhan 430074, Peoples R China
[18] Inserm, IMT Atlantique, UMR 1101 LaTIM, F-29200 Brest, France
[19] Ecole Cent Nantes, UMR, CNRS, LS2N, F-44321 Nantes, France
[20] Keosys Med Imaging, F-44800 Herblain, France
[21] Tsinghua Univ, Shenzhen Int Grad Sch, Beijing 100190, Peoples R China
[22] Chinese Univ Hong Kong, Dept Biomed Engn, Hong Kong, Peoples R China
[23] TUM, Chair Comp Aided Med Procedures & Augmented Real, D-85748 Garching, Germany
[24] AGH Univ Sci & Technol, Dept Measurement & Elect, PL-30059 Krakow, Poland
[25] Univ Appl Sci Western Switzerland, Informat Syst Inst, CH-3960 Sierre, Switzerland
[26] Uppsala Univ, Dept Informat Technol, S-75236 Uppsala, Sweden
[27] Elekta Instrument AB, S-11357 Stockholm, Sweden
[28] Imperial Coll London, Dept Comp, London SW7 2BX, England
[29] Univ Birmingham, Sch Comp Sci, Birmingham B15 2SQ, England
[30] Alan Turing Inst, London NW1 2DB, England
[31] Dept Hlth Res, SINTEF Digital, N-7037 Trondheim, Norway
[32] Concordia Univ, Dept Comp Sci & Software Engn, Montreal, PQ H3G 1M8, Canada
[33] Vanderbilt Univ, Dept Elect & Comp Engn, Nashville, TN 37235 USA
[34] MIT, Massachusetts Gen Hosp, Martinos Ctr Biomed Imaging, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
关键词
Task analysis; Biomedical imaging; Computed tomography; Image registration; Lung; Benchmark testing; Three-dimensional displays; Medical image registration; challenge; evaluation; MRI; FRAMEWORK;
D O I
10.1109/TMI.2022.3213983
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Image registration is a fundamental medical image analysis task, and a wide variety of approaches have been proposed. However, only a few studies have comprehensively compared medical image registration approaches on a wide range of clinically relevant tasks. This limits the development of registration methods, the adoption of research advances into practice, and a fair benchmark across competing approaches. The Learn2Reg challenge addresses these limitations by providing a multi-task medical image registration data set for comprehensive characterisation of deformable registration algorithms. A continuous evaluation will be possible at https://learn2reg.grand-challenge.org. Learn2Reg covers a wide range of anatomies (brain, abdomen, and thorax), modalities (ultrasound, CT, MR), availability of annotations, as well as intra- and inter-patient registration evaluation. We established an easily accessible framework for training and validation of 3D registration methods, which enabled the compilation of results of over 65 individual method submissions from more than 20 unique teams. We used a complementary set of metrics, including robustness, accuracy, plausibility, and runtime, enabling unique insight into the current state-of-the-art of medical image registration. This paper describes datasets, tasks, evaluation methods and results of the challenge, as well as results of further analysis of transferability to new datasets, the importance of label supervision, and resulting bias. While no single approach worked best across all tasks, many methodological aspects could be identified that push the performance of medical image registration to new state-of-the-art performance. Furthermore, we demystified the common belief that conventional registration methods have to be much slower than deep-learning-based methods
引用
收藏
页码:697 / 712
页数:16
相关论文
共 50 条
  • [1] Conditional Deep Laplacian Pyramid Image Registration Network in Learn2Reg Challenge
    Mok, Tony C. W.
    Chung, Albert C. S.
    [J]. BIOMEDICAL IMAGE REGISTRATION, DOMAIN GENERALISATION AND OUT-OF-DISTRIBUTION ANALYSIS, 2022, 13166 : 161 - 167
  • [2] Fraunhofer MEVIS Image Registration Solutions for the Learn2Reg 2021 Challenge
    Hering, Alessa
    Lange, Annkristin
    Heldmann, Stefan
    Haeger, Stephanie
    Kuckertz, Sven
    [J]. BIOMEDICAL IMAGE REGISTRATION, DOMAIN GENERALISATION AND OUT-OF-DISTRIBUTION ANALYSIS, 2022, 13166 : 147 - 152
  • [3] Multi-task deep learning for medical image computing and analysis: A review
    Zhao, Yan
    Wang, Xiuying
    Che, Tongtong
    Bao, Guoqing
    Li, Shuyu
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 153
  • [4] Fast 3D Registration with Accurate Optimisation and Little Learning for Learn2Reg 2021
    Siebert, Hanna
    Hansen, Lasse
    Heinrich, Mattias P.
    [J]. BIOMEDICAL IMAGE REGISTRATION, DOMAIN GENERALISATION AND OUT-OF-DISTRIBUTION ANALYSIS, 2022, 13166 : 174 - 179
  • [5] Multi-task Deep Learning for Image Understanding
    Yu, Bo
    Lane, Ian
    [J]. 2014 6TH INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), 2014, : 37 - 42
  • [6] MEDIC: a multi-task learning dataset for disaster image classification
    Alam, Firoj
    Alam, Tanvirul
    Hasan, Md Arid
    Hasnat, Abul
    Imran, Muhammad
    Ofli, Ferda
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (03): : 2609 - 2632
  • [7] MEDIC: a multi-task learning dataset for disaster image classification
    Firoj Alam
    Tanvirul Alam
    Md. Arid Hasan
    Abul Hasnat
    Muhammad Imran
    Ferda Ofli
    [J]. Neural Computing and Applications, 2023, 35 : 2609 - 2632
  • [8] Deep multi-task learning for malware image classification
    Bensaoud, Ahmed
    Kalita, Jugal
    [J]. JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2022, 64
  • [9] Image Captioning with Deep Bidirectional LSTMs and Multi-Task Learning
    Wang, Cheng
    Yang, Haojin
    Meinel, Christoph
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2018, 14 (02)
  • [10] Hand Image Understanding via Deep Multi-Task Learning
    Zhang, Xiong
    Huang, Hongsheng
    Tan, Jianchao
    Xu, Hongmin
    Yang, Cheng
    Peng, Guozhu
    Wang, Lei
    Liu, Ji
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 11261 - 11272