Liquid drop shapes on hexagonal substrates: corner dewetting in the context of vapor-liquid-solid growth of nanowires

被引:0
|
作者
Spencer, Brian J. [1 ]
机构
[1] Univ Buffalo State Univ New York, Dept Math, Buffalo, NY 14260 USA
关键词
Capillary surface; Constrained energy minimization; Contact line; Droplet; Free boundary problem;
D O I
10.1007/s10665-024-10382-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the equilibrium shape of a liquid drop on a hexagonal substrate as motivated by vapor-liquid growth of nanowires. We numerically determine the energy-minimizing liquid drop shape on a hexagonal base using the software Surface Evolver in conjunction with an efficient regridding algorithm and convergence monitoring. The drop shape depends on two nondimensional parameters, the drop volume, and the equilibrium contact angle. We show that sufficiently large drops are well approximated away from the base by a spherical cap drop with geometric parameters determined by the area of the hexagonal base. Notably, however, the drop/base contact region does not extend to the corners of the hexagonal base, even in the limit of large volume V. In particular, there is a self-similar structure to the dry corner region with a length scale proportional to V-3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V<^>{-3/2}$$\end{document}. Since steady-state growth of faceted hexagonal nanowires by vapor-liquid-solid growth requires the liquid drop to be commensurate with the underlying wire cross-section, our findings mean that steady-state growth of hexagonal wires is not strictly compatible with an equilibrium liquid drop acting as a catalyst.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Size effect on Ge nanowires growth kinetics by the vapor-liquid-solid mechanism
    Renard, C.
    Boukhicha, R.
    Gardes, C.
    Fossard, F.
    Yam, V.
    Vincent, L.
    Bouchier, D.
    Hajjar, S.
    Bubendorff, J. L.
    Garreau, G.
    Pirri, C.
    [J]. THIN SOLID FILMS, 2012, 520 (08) : 3314 - 3318
  • [42] A nucleation-growth model of nanowires produced by the vapor-liquid-solid process
    Li, Na
    Li, Wenxuan
    Liu, Lijun
    Tan, Teh Y.
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 114 (06)
  • [43] Simulating Vapor-Liquid-Solid Growth of Au-Seeded InGaAs Nanowires
    Martensson, Erik K.
    Johansson, Jonas
    Dick, Kimberly A.
    [J]. ACS NANOSCIENCE AU, 2022, 2 (03): : 239 - 249
  • [44] Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction
    Westwater, J
    Gosain, DP
    Tomiya, S
    Usui, S
    Ruda, H
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (03): : 554 - 557
  • [45] Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires
    Kodambaka, S
    Tersoff, J
    Reuter, MC
    Ross, FM
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (09)
  • [46] Reassembling of Ni and Pt catalyst in the vapor-liquid-solid growth of GaN nanowires
    Park, Eunmi
    Shim, Sojung
    Ha, Ryong
    Oh, Eunsoon
    Lee, Byoung Woo
    Choi, Heon-Jin
    [J]. MATERIALS LETTERS, 2011, 65 (15-16) : 2458 - 2461
  • [47] Growth of silica nanowires on diatom frustules via vapor-liquid-solid process
    Li, Aobo
    Zhao, Xiaoguang
    Anderson, Stephan
    Zhang, Xin
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [48] Indium Predeposition-Enabled Vapor-Liquid-Solid Growth of InN Nanowires
    Liu, Haibin
    Cheng, Guosheng
    [J]. APPLIED PHYSICS EXPRESS, 2011, 4 (10)
  • [49] Pulsed Vapor-Liquid-Solid Growth of Antimony Selenide and Antimony Sulfide Nanowires
    Yang, Ren Bin
    Bachmann, Julien
    Pippel, Eckhard
    Berger, Andreas
    Woltersdorf, Joerg
    Goesele, Ulrich
    Nielsch, Kornelius
    [J]. ADVANCED MATERIALS, 2009, 21 (31) : 3170 - +
  • [50] Vapor-liquid-solid growth of vertically aligned InP nanowires by metalorganic vapor phase epitaxy
    Bhunia, S
    Kawamura, T
    Fujikawa, S
    Nakashima, H
    Furukawa, K
    Torimitsu, K
    Watanabe, Y
    [J]. THIN SOLID FILMS, 2004, 464 : 244 - 247