Liquid drop shapes on hexagonal substrates: corner dewetting in the context of vapor-liquid-solid growth of nanowires

被引:0
|
作者
Spencer, Brian J. [1 ]
机构
[1] Univ Buffalo State Univ New York, Dept Math, Buffalo, NY 14260 USA
关键词
Capillary surface; Constrained energy minimization; Contact line; Droplet; Free boundary problem;
D O I
10.1007/s10665-024-10382-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the equilibrium shape of a liquid drop on a hexagonal substrate as motivated by vapor-liquid growth of nanowires. We numerically determine the energy-minimizing liquid drop shape on a hexagonal base using the software Surface Evolver in conjunction with an efficient regridding algorithm and convergence monitoring. The drop shape depends on two nondimensional parameters, the drop volume, and the equilibrium contact angle. We show that sufficiently large drops are well approximated away from the base by a spherical cap drop with geometric parameters determined by the area of the hexagonal base. Notably, however, the drop/base contact region does not extend to the corners of the hexagonal base, even in the limit of large volume V. In particular, there is a self-similar structure to the dry corner region with a length scale proportional to V-3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V<^>{-3/2}$$\end{document}. Since steady-state growth of faceted hexagonal nanowires by vapor-liquid-solid growth requires the liquid drop to be commensurate with the underlying wire cross-section, our findings mean that steady-state growth of hexagonal wires is not strictly compatible with an equilibrium liquid drop acting as a catalyst.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Growth of Narrow and Straight Germanium Nanowires by Vapor-Liquid-Solid Chemical Vapor Deposition
    Simanullang, Marolop
    Usami, Koichi
    Kodera, Tetsuo
    Uchida, Ken
    Oda, Shunri
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (10)
  • [32] Refinement of Nucleation Theory for Vapor-Liquid-Solid Nanowires
    Dubrovskii, V. G.
    [J]. CRYSTAL GROWTH & DESIGN, 2017, 17 (05) : 2589 - 2593
  • [33] Modeling the nucleation statistics in vapor-liquid-solid nanowires
    Sibirev, N. V.
    Nazarenko, M. V.
    Zeze, D. A.
    Dubrovskii, V. G.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2014, 401 : 51 - 55
  • [34] Vapor-liquid-solid growth of silicon nanowires by chemical vapor deposition on implanted templates
    Christiansen, S.
    Schneider, R.
    Scholz, R.
    Goesele, U.
    Stelzner, Th.
    Andrae, G.
    Wendler, E.
    Wesch, W.
    [J]. JOURNAL OF APPLIED PHYSICS, 2006, 100 (08)
  • [35] Doping nanowires grown by the vapor-liquid-solid mechanism
    Schwalbach, E. J.
    Voorhees, P. W.
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (06)
  • [36] About Some Fundamental Aspects of the Growth Mechanism Vapor-Liquid-Solid Nanowires
    Nebol'sin, Valery A. A.
    Swaikat, Nada
    [J]. JOURNAL OF NANOTECHNOLOGY, 2023, 2023
  • [37] Platinum-Assisted Vapor-Liquid-Solid Growth of GaN Nanowires and Their Properties
    Oh, Eunsoon
    Lee, Byoung Woo
    Shim, Sojung
    Lee, Ki-Young
    Oh, Hwangyou
    Choi, Heon-Jin
    Son, Byung Hee
    Ahn, Yeong Hwan
    Dang, Le Si
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2010, 56 (01) : 100 - 103
  • [38] The compositional homogeneity of the metal particle during vapor-liquid-solid growth of nanowires
    Johansson, Jonas
    Overgaard, Niels Chr.
    Magnusson, Martin H.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [39] Growth and characterization of germanium telluride nanowires via vapor-liquid-solid mechanism
    Taha, Inas
    Ansari, Sumayya M.
    Alketbi, Shaikha
    Mohammad, Baker
    Aldosari, Haila M.
    [J]. NANOTECHNOLOGY, 2024, 35 (02)
  • [40] Growth of GaN nanowires through a pyrolysis method with vapor-liquid-solid mechanism
    Zhan, Jie
    Liu, Rujun
    Hao, Xiaopeng
    Tao, Xutang
    Jiang, Minhua
    [J]. SURFACE & COATINGS TECHNOLOGY, 2007, 201 (9-11): : 5578 - 5581