Liquid drop shapes on hexagonal substrates: corner dewetting in the context of vapor-liquid-solid growth of nanowires

被引:0
|
作者
Spencer, Brian J. [1 ]
机构
[1] Univ Buffalo State Univ New York, Dept Math, Buffalo, NY 14260 USA
关键词
Capillary surface; Constrained energy minimization; Contact line; Droplet; Free boundary problem;
D O I
10.1007/s10665-024-10382-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the equilibrium shape of a liquid drop on a hexagonal substrate as motivated by vapor-liquid growth of nanowires. We numerically determine the energy-minimizing liquid drop shape on a hexagonal base using the software Surface Evolver in conjunction with an efficient regridding algorithm and convergence monitoring. The drop shape depends on two nondimensional parameters, the drop volume, and the equilibrium contact angle. We show that sufficiently large drops are well approximated away from the base by a spherical cap drop with geometric parameters determined by the area of the hexagonal base. Notably, however, the drop/base contact region does not extend to the corners of the hexagonal base, even in the limit of large volume V. In particular, there is a self-similar structure to the dry corner region with a length scale proportional to V-3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V<^>{-3/2}$$\end{document}. Since steady-state growth of faceted hexagonal nanowires by vapor-liquid-solid growth requires the liquid drop to be commensurate with the underlying wire cross-section, our findings mean that steady-state growth of hexagonal wires is not strictly compatible with an equilibrium liquid drop acting as a catalyst.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Vapor-Liquid-Solid Growth of Endotaxial Semiconductor Nanowires
    Li, Shaozhou
    Huang, Xiao
    Liu, Qing
    Cao, Xiehong
    Huo, Fengwei
    Zhang, Hua
    Gan, Chee Lip
    [J]. NANO LETTERS, 2012, 12 (11) : 5565 - 5570
  • [2] NUCLEATION OF ISLANDS WITH VERTICAL OR TRUNCATED CORNER FACETS IN VAPOR-LIQUID-SOLID NANOWIRES
    Dubrovskii, V. G.
    Sokolova, Zh, V
    Rylkova, M., V
    Zhiglinsky, A. A.
    [J]. MATERIALS PHYSICS AND MECHANICS, 2019, 42 (02): : 159 - 164
  • [3] Lithium fluoride nanowires via vapor-liquid-solid growth
    Jiang, CB
    Wu, B
    Zhang, ZQ
    Lu, L
    Li, SX
    Mao, SX
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (09)
  • [4] Unseeded growth of germanium nanowires by vapor-liquid-solid mechanism
    Zaitseva, N
    Harper, J
    Gerion, D
    Saw, C
    [J]. APPLIED PHYSICS LETTERS, 2005, 86 (05) : 1 - 3
  • [5] Extended Vapor-Liquid-Solid Growth of Silicon Carbide Nanowires
    Rajesh, John Anthuvan
    Pandurangan, Arumugam
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (04) : 2741 - 2751
  • [6] Steady growth of nanowires via the vapor-liquid-solid method
    Roper, Steven M.
    Davis, Stephen H.
    Norris, Scott A.
    Golovin, Alexander A.
    Voorhees, Peter W.
    Weiss, Mark
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 102 (03)
  • [7] From Droplets to Nanowires: Dynamics of Vapor-Liquid-Solid Growth
    Schwarz, K. W.
    Tersoff, J.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (20)
  • [8] Vapor-liquid-solid growth of silicon-germanium nanowires
    Lew, KK
    Pan, L
    Dickey, EC
    Redwing, JM
    [J]. ADVANCED MATERIALS, 2003, 15 (24) : 2073 - +
  • [9] Catalytic growth of nanowires: Vapor-liquid-solid, vapor-solid-solid, solution-liquid-solid and solid-liquid-solid growth
    Kolasinski, Kurt W.
    [J]. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2006, 10 (3-4): : 182 - 191
  • [10] Morphology control of GaN nanowires by vapor-liquid-solid growth
    Inoue, Y.
    Tajima, A.
    Ishida, A.
    Mimura, H.
    [J]. PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 5, NO 9, 2008, 5 (09): : 3001 - +