A fully automated and explainable algorithm for predicting malignant transformation in oral epithelial dysplasia

被引:4
|
作者
Shephard, Adam J. [1 ]
Bashir, Raja Muhammad Saad [1 ]
Mahmood, Hanya [2 ]
Jahanifar, Mostafa [1 ]
Minhas, Fayyaz [1 ]
Raza, Shan E. Ahmed [1 ]
Mccombe, Kris D. [3 ]
Craig, Stephanie G. [3 ]
James, Jacqueline [3 ]
Brooks, Jill [4 ]
Nankivell, Paul [4 ]
Mehanna, Hisham [4 ]
Khurram, Syed Ali [2 ]
Rajpoot, Nasir M. [1 ]
机构
[1] Univ Warwick, Tissue Image Analyt Ctr, Dept Comp Sci, Coventry, England
[2] Univ Sheffield, Sch Clin Dent, Sheffield, England
[3] Queens Univ Belfast, Precis Med Ctr Excellence, Patrick G Johnston Ctr Canc Res, Belfast, North Ireland
[4] Univ Birmingham, Inst Canc & Genom Sci, Inst Head & Neck Studies & Educ, Birmingham, England
基金
美国国家卫生研究院;
关键词
SEGMENTATION;
D O I
10.1038/s41698-024-00624-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Oral epithelial dysplasia (OED) is a premalignant histopathological diagnosis given to lesions of the oral cavity. Its grading suffers from significant inter-/intra-observer variability, and does not reliably predict malignancy progression, potentially leading to suboptimal treatment decisions. To address this, we developed an artificial intelligence (AI) algorithm, that assigns an Oral Malignant Transformation (OMT) risk score based on the Haematoxylin and Eosin (H&E) stained whole slide images (WSIs). Our AI pipeline leverages an in-house segmentation model to detect and segment both nuclei and epithelium. Subsequently, a shallow neural network utilises interpretable morphological and spatial features, emulating histological markers, to predict progression. We conducted internal cross-validation on our development cohort (Sheffield; n = 193 cases) and independent validation on two external cohorts (Birmingham and Belfast; n = 89 cases). On external validation, the proposed OMTscore achieved an AUROC = 0.75 (Recall = 0.92) in predicting OED progression, outperforming other grading systems (Binary: AUROC = 0.72, Recall = 0.85). Survival analyses showed the prognostic value of our OMTscore (C-index = 0.60, p = 0.02), compared to WHO (C-index = 0.64, p = 0.003) and binary grades (C-index = 0.65, p < 0.001). Nuclear analyses elucidated the presence of peri-epithelial and intra-epithelial lymphocytes in highly predictive patches of transforming cases (p < 0.001). This is the first study to propose a completely automated, explainable, and externally validated algorithm for predicting OED transformation. Our algorithm shows comparable-to-human-level performance, offering a promising solution to the challenges of grading OED in routine clinical practice.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Malignant transformation of oral leukoplakia with a focus on low-grade dysplasia
    Watabe, Yukio
    Nomura, Takeshi
    Onda, Takeshi
    Yakushiji, Takashi
    Yamamoto, Nobuharu
    Ohata, Hitoshi
    Takano, Nobuo
    Shibahara, Takahiko
    JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY MEDICINE AND PATHOLOGY, 2016, 28 (01) : 26 - 29
  • [42] PREDICTION OF MALIGNANT TRANSFORMATION IN ORAL EPITHELIAL LESIONS BY IMAGE CYTOMETRY
    ABDELSALAM, M
    MAYALL, BH
    CHEW, K
    SILVERMAN, S
    GREENSPAN, JS
    CANCER, 1988, 62 (09) : 1981 - 1987
  • [43] Histopathological findings of oral epithelial dysplasias and their relation to malignant transformation
    Ellonen, Riikka
    Suominen, Auli
    Kelppe, Jetta
    Willberg, Jaana
    Rautava, Jaana
    Laine, Hanna
    CANCER TREATMENT AND RESEARCH COMMUNICATIONS, 2023, 34
  • [44] Quality of life in patients with oral potentially malignant disorders: oral lichen planus and oral epithelial dysplasia
    Ashshi, Rawan A.
    Stanbouly, Dani
    Maisano, Pietro G.
    Alaraik, Ayman F.
    Chuang, Sung-Kiang
    Takako, Tanaka I.
    Stoopler, Eric T.
    Le, Anh D.
    Sollecito, Thomas P.
    Shanti, Rabie M.
    ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2023, 135 (03): : 363 - 371
  • [45] Predictive Value of Dysplasia Grading and DNA Ploidy in Malignant Transformation of Oral Potentially Malignant Disorders
    Sperandio, Marcelo
    Brown, Amy L.
    Lock, Claire
    Morgan, Peter R.
    Coupland, Victoria H.
    Madden, Peter B.
    Warnakulasuriya, Saman
    Moller, Henrik
    Odell, Edward W.
    CANCER PREVENTION RESEARCH, 2013, 6 (08) : 822 - 831
  • [46] Oral epithelial dysplasia, atypical verrucous lesions and oral potentially malignant disorders: focus on histopathology
    Muller, Susan
    ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2018, 125 (06): : 591 - 602
  • [47] A Multi-task Learning Network for Automated Detection of Oral Epithelial Dysplasia
    Aljuaid, Abeer
    Almohaya, Mai
    Aljuaid, Ashwaq
    Anwar, Mohd
    Proceedings - 2024 IEEE International Conference on Information Reuse and Integration for Data Science, IRI 2024, 2024, : 25 - 30
  • [48] Platform-Independent Prediction of Malignant Transformation Within Ten Years of Confirmed Oral Epithelial Dysplasia Using Image Analysis
    Craig, S. G. C.
    Elamin, E. A.
    Tumelty, M. T.
    McComb, K. M.
    Viratham-Pulsawatdi, A. V. P.
    Humphries, M. P. H.
    Bingham, V. B.
    McQuaid, S. M.
    Salto-Tellez, M. S. T.
    James, J. A. J.
    JOURNAL OF PATHOLOGY, 2019, 249 : S36 - S36
  • [49] A Multi-task Learning Network for Automated Detection of Oral Epithelial Dysplasia
    Aljuaid, Abeer
    Almohaya, Mai
    Aljuaid, Ashwaq
    Anwar, Mohd
    2024 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE, IRI 2024, 2024, : 25 - 30
  • [50] HPV DNA identification in oral premalignant lesions with different grades of epithelial dysplasia and in oral malignant lesions
    Acay, R.
    Rezende, N.
    Aburad, A.
    Costa, A.
    Nunes, F.
    de Sousa, S.
    ORAL ONCOLOGY, 2007, : 150 - 150