A fully automated and explainable algorithm for predicting malignant transformation in oral epithelial dysplasia

被引:4
|
作者
Shephard, Adam J. [1 ]
Bashir, Raja Muhammad Saad [1 ]
Mahmood, Hanya [2 ]
Jahanifar, Mostafa [1 ]
Minhas, Fayyaz [1 ]
Raza, Shan E. Ahmed [1 ]
Mccombe, Kris D. [3 ]
Craig, Stephanie G. [3 ]
James, Jacqueline [3 ]
Brooks, Jill [4 ]
Nankivell, Paul [4 ]
Mehanna, Hisham [4 ]
Khurram, Syed Ali [2 ]
Rajpoot, Nasir M. [1 ]
机构
[1] Univ Warwick, Tissue Image Analyt Ctr, Dept Comp Sci, Coventry, England
[2] Univ Sheffield, Sch Clin Dent, Sheffield, England
[3] Queens Univ Belfast, Precis Med Ctr Excellence, Patrick G Johnston Ctr Canc Res, Belfast, North Ireland
[4] Univ Birmingham, Inst Canc & Genom Sci, Inst Head & Neck Studies & Educ, Birmingham, England
基金
美国国家卫生研究院;
关键词
SEGMENTATION;
D O I
10.1038/s41698-024-00624-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Oral epithelial dysplasia (OED) is a premalignant histopathological diagnosis given to lesions of the oral cavity. Its grading suffers from significant inter-/intra-observer variability, and does not reliably predict malignancy progression, potentially leading to suboptimal treatment decisions. To address this, we developed an artificial intelligence (AI) algorithm, that assigns an Oral Malignant Transformation (OMT) risk score based on the Haematoxylin and Eosin (H&E) stained whole slide images (WSIs). Our AI pipeline leverages an in-house segmentation model to detect and segment both nuclei and epithelium. Subsequently, a shallow neural network utilises interpretable morphological and spatial features, emulating histological markers, to predict progression. We conducted internal cross-validation on our development cohort (Sheffield; n = 193 cases) and independent validation on two external cohorts (Birmingham and Belfast; n = 89 cases). On external validation, the proposed OMTscore achieved an AUROC = 0.75 (Recall = 0.92) in predicting OED progression, outperforming other grading systems (Binary: AUROC = 0.72, Recall = 0.85). Survival analyses showed the prognostic value of our OMTscore (C-index = 0.60, p = 0.02), compared to WHO (C-index = 0.64, p = 0.003) and binary grades (C-index = 0.65, p < 0.001). Nuclear analyses elucidated the presence of peri-epithelial and intra-epithelial lymphocytes in highly predictive patches of transforming cases (p < 0.001). This is the first study to propose a completely automated, explainable, and externally validated algorithm for predicting OED transformation. Our algorithm shows comparable-to-human-level performance, offering a promising solution to the challenges of grading OED in routine clinical practice.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] p16 promoter methylation is a potential predictor of malignant transformation in oral epithelial dysplasia
    Hall, Gillian L.
    Shaw, Richard J.
    Field, E. Anne
    Rogers, Simon N.
    Sutton, David N.
    Woolgar, Julia A.
    Lowe, Derek
    Liloglou, Triantafillos
    Field, John K.
    Risk, Janet M.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2008, 17 (08) : 2174 - 2179
  • [22] Advances toward fully automated in vivo assessment of oral epithelial dysplasia by nuclear endomicroscopyA pilot study
    Liese, Jan
    Winter, Karsten
    Glass, Anne
    Bertolini, Julia
    Kaemmerer, Peer Wolfgang
    Frerich, Bernhard
    Schiefke, Ingolf
    Remmerbach, Torsten W.
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2017, 46 (10) : 911 - 920
  • [23] The management of oral epithelial dysplasia: The Liverpool algorithm
    Field, E. A.
    McCarthy, C. E.
    Ho, M. W.
    Rajlawat, B. P.
    Holt, D.
    Rogers, S. N.
    Triantafyllou, A.
    Field, J. K.
    Shaw, R. J.
    ORAL ONCOLOGY, 2015, 51 (10) : 883 - 887
  • [24] A useful marker of malignant transformation and recurrence in oral dysplasia?
    Thomson, P. J.
    Goodson, M. L.
    Hamadah, O.
    Maclusky, M.
    ORAL ONCOLOGY, 2011, 47 : S113 - S114
  • [25] Malignant transformation in patients affected by hyperkeratosis and oral dysplasia
    Querzoli, G.
    Petrocelli, M.
    Bariani, E.
    Baietti, A. M.
    Gissi, D. B.
    Gabusi, A.
    Montebugnoli, L.
    Tarsitano, A.
    Foschini, M. P.
    VIRCHOWS ARCHIV, 2024, 485 : S414 - S414
  • [26] Podoplanin Expression Independently and Jointly with Oral Epithelial Dysplasia Grade Acts as a Potential Biomarker of Malignant Transformation in Oral Leukoplakia
    Monteiro, Luis
    do Amaral, Barbas
    Delgado, Leonor
    Garces, Fernanda
    Salazar, Filomena
    Pacheco, Jose Julio
    Lopes, Carlos
    Warnakulasuriya, Saman
    BIOMOLECULES, 2022, 12 (05)
  • [27] Evaluation of SOX2 and podoplanin expression in oral epithelial dysplasia and its correlation with malignant transformation
    Verma, Vani
    Chandrashekar, Chetana
    JOURNAL OF INVESTIGATIVE AND CLINICAL DENTISTRY, 2019, 10 (04) : e12450
  • [28] Risk Factors for Malignant Transformation of Oral Epithelial Dysplasia: A Systematic Review and Meta-Regression Analysis
    Jang, Yeonggyeong
    Kim, Yeon Seo
    Park, Hee-Kyung
    Hahn, Seokyung
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2024, 33 : 350 - 350
  • [29] Loss of FANCD2 and related proteins may predict malignant transformation in oral epithelial dysplasia
    Ho, Michael W.
    Ryan, Mark P.
    Gupta, Juhi
    Triantafyllou, Asterios
    Risk, Janet M.
    Shaw, Richard J.
    Wilson, James B.
    ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2022, 133 (04): : 377 - 387
  • [30] Exploring the microbiome of oral epithelial dysplasia as a predictor of malignant progression
    Wright, Robyn J.
    Pewarchuk, Michelle E.
    Marshall, Erin A.
    Murrary, Benjamin
    Rosin, Miriam P.
    Laronde, Denise M.
    Zhang, Lewei
    Lam, Wan L.
    Langille, Morgan G. I.
    Rock, Leigha D.
    BMC ORAL HEALTH, 2023, 23 (01)