A fully automated and explainable algorithm for predicting malignant transformation in oral epithelial dysplasia

被引:4
|
作者
Shephard, Adam J. [1 ]
Bashir, Raja Muhammad Saad [1 ]
Mahmood, Hanya [2 ]
Jahanifar, Mostafa [1 ]
Minhas, Fayyaz [1 ]
Raza, Shan E. Ahmed [1 ]
Mccombe, Kris D. [3 ]
Craig, Stephanie G. [3 ]
James, Jacqueline [3 ]
Brooks, Jill [4 ]
Nankivell, Paul [4 ]
Mehanna, Hisham [4 ]
Khurram, Syed Ali [2 ]
Rajpoot, Nasir M. [1 ]
机构
[1] Univ Warwick, Tissue Image Analyt Ctr, Dept Comp Sci, Coventry, England
[2] Univ Sheffield, Sch Clin Dent, Sheffield, England
[3] Queens Univ Belfast, Precis Med Ctr Excellence, Patrick G Johnston Ctr Canc Res, Belfast, North Ireland
[4] Univ Birmingham, Inst Canc & Genom Sci, Inst Head & Neck Studies & Educ, Birmingham, England
基金
美国国家卫生研究院;
关键词
SEGMENTATION;
D O I
10.1038/s41698-024-00624-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Oral epithelial dysplasia (OED) is a premalignant histopathological diagnosis given to lesions of the oral cavity. Its grading suffers from significant inter-/intra-observer variability, and does not reliably predict malignancy progression, potentially leading to suboptimal treatment decisions. To address this, we developed an artificial intelligence (AI) algorithm, that assigns an Oral Malignant Transformation (OMT) risk score based on the Haematoxylin and Eosin (H&E) stained whole slide images (WSIs). Our AI pipeline leverages an in-house segmentation model to detect and segment both nuclei and epithelium. Subsequently, a shallow neural network utilises interpretable morphological and spatial features, emulating histological markers, to predict progression. We conducted internal cross-validation on our development cohort (Sheffield; n = 193 cases) and independent validation on two external cohorts (Birmingham and Belfast; n = 89 cases). On external validation, the proposed OMTscore achieved an AUROC = 0.75 (Recall = 0.92) in predicting OED progression, outperforming other grading systems (Binary: AUROC = 0.72, Recall = 0.85). Survival analyses showed the prognostic value of our OMTscore (C-index = 0.60, p = 0.02), compared to WHO (C-index = 0.64, p = 0.003) and binary grades (C-index = 0.65, p < 0.001). Nuclear analyses elucidated the presence of peri-epithelial and intra-epithelial lymphocytes in highly predictive patches of transforming cases (p < 0.001). This is the first study to propose a completely automated, explainable, and externally validated algorithm for predicting OED transformation. Our algorithm shows comparable-to-human-level performance, offering a promising solution to the challenges of grading OED in routine clinical practice.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Diagnostic Criteria for Oral Epithelial Dysplasia: Predicting Malignant Transformation
    Rodrigues, Amanda Zimmer
    Laureano, Natalia Koerich
    Maraschin, Bruna Jalfim
    da Silva, Alessandra Dutra
    da Silva, Viviane Palmeira
    Rados, Pantelis Varvaki
    Visioli, Fernanda
    HEAD & NECK PATHOLOGY, 2025, 19 (01):
  • [2] Reproducibility of two grading oral epithelial dysplasia systems: an attempt for predicting the malignant transformation
    Kujan, O
    Oliver, R
    Khatab, A
    Roberts, S
    Thakker, N
    Sloan, P
    ORAL ONCOLOGY, 2005, 1 (01) : 92 - 92
  • [3] Malignant transformation in a cohort of patients with oral epithelial dysplasia
    Hankinson, P. M.
    Mohammed-Ali, R., I
    Smith, A. T.
    Khurram, S. A.
    BRITISH JOURNAL OF ORAL & MAXILLOFACIAL SURGERY, 2021, 59 (09): : 1099 - 1101
  • [4] Malignant transformation of oral epithelial dysplasia in Southwest Finland
    Nevanpaa, Toni T.
    Terava, Antti E.
    Laine, Hanna K.
    Rautava, Jaana
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [5] The clinical determinants of malignant transformation in oral epithelial dysplasia
    Ho, M. W.
    Risk, J. M.
    Woolgar, J. A.
    Field, E. A.
    Field, J. K.
    Steele, J. C.
    Rajlawat, B. P.
    Triantafyllou, A.
    Rogers, S. N.
    Lowe, D.
    Shaw, R. J.
    ORAL ONCOLOGY, 2012, 48 (10) : 969 - 976
  • [6] Malignant transformation of oral epithelial dysplasia in Southwest Finland
    Toni T. Nevanpää
    Antti E. Terävä
    Hanna K. Laine
    Jaana Rautava
    Scientific Reports, 12
  • [7] Update on Malignant Transformation Rate of Oral Epithelial Dysplasia: A Systematic Review
    Kim, Yeon Seo
    Park, Hee-Kyung
    Hahn, Seokyung
    Jang, Yeonggyeong
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2024, 33 : 352 - 352
  • [8] Epithelial Dysplasia as a Predictor of Malignant Transformation in Oral Potentially Malignant Disorders: The Concepts, Controversies, and Challenges
    Janardhanan, Mahija
    Suresh, Rakesh
    Savithri, Vindhya
    Aravind, Thara
    Mohan, Mridula
    Biniraj, K. R.
    JOURNAL OF HEAD & NECK PHYSICIANS AND SURGEONS, 2021, 9 (02): : 88 - 93
  • [9] PREDICTION OF MALIGNANT TRANSFORMATION OF ORAL EPITHELIAL DYSPLASIA USING IMAGE-ANALYSIS
    ABDELSALAM, M
    MAYALL, BH
    HANSEN, LS
    SILVERMAN, S
    GREENSPAN, JS
    JOURNAL OF DENTAL RESEARCH, 1986, 65 : 220 - 220
  • [10] Prediction of malignant transformation in oral epithelial dysplasia using infrared absorbance spectra
    Ellis, Barnaby J.
    Whitley, Conor A.
    Triantafyllou, Asterios
    Gunning, Philip J.
    Smith, Caroline, I
    Barrett, Steve D.
    Gardner, Peter
    Shaw, Richard J.
    Weightman, Peter
    Risk, Janet M.
    PLOS ONE, 2022, 17 (03):