An artificial intelligence accelerated virtual screening platform for drug discovery

被引:14
|
作者
Zhou, Guangfeng [1 ,2 ]
Rusnac, Domnita-Valeria [3 ]
Park, Hahnbeom [4 ,5 ]
Canzani, Daniele [6 ]
Nguyen, Hai Minh [7 ]
Stewart, Lance [2 ]
Bush, Matthew F. [6 ]
Nguyen, Phuong Tran [8 ]
Wulff, Heike [7 ]
Yarov-Yarovoy, Vladimir [8 ,9 ]
Zheng, Ning [3 ]
Dimaio, Frank [1 ,2 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[2] Univ Washington, Inst Prot Design, Seattle, WA 98195 USA
[3] Univ Washington, Howard Hughes Med Inst, Dept Pharmacol, Seattle, WA 98195 USA
[4] Korea Inst Sci & Technol, Brain Sci Inst, Seoul, South Korea
[5] Sungkyunkwan Univ, SKKU Inst Convergence, KIST SKKU Brain Res Ctr, Suwon, South Korea
[6] Univ Washington, Dept Chem, Seattle, WA USA
[7] Univ Calif Davis, Dept Pharmacol, Davis, CA USA
[8] Univ Calif Davis, Dept Physiol & Membrane Biol, Davis, CA USA
[9] Univ Calif Davis, Dept Anesthesiol & Pain Med, Sacramento, CA USA
基金
美国国家科学基金会; 美国国家卫生研究院; 新加坡国家研究基金会;
关键词
FAST INACTIVATION; ACCURATE DOCKING; POSE PREDICTION; SMALL MOLECULES; SODIUM-CHANNEL; DOMAIN; PROTEIN; BINDING; GLIDE; OPTIMIZATION;
D O I
10.1038/s41467-024-52061-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structure-based virtual screening is a key tool in early drug discovery, with growing interest in the screening of multi-billion chemical compound libraries. However, the success of virtual screening crucially depends on the accuracy of the binding pose and binding affinity predicted by computational docking. Here we develop a highly accurate structure-based virtual screen method, RosettaVS, for predicting docking poses and binding affinities. Our approach outperforms other state-of-the-art methods on a wide range of benchmarks, partially due to our ability to model receptor flexibility. We incorporate this into a new open-source artificial intelligence accelerated virtual screening platform for drug discovery. Using this platform, we screen multi-billion compound libraries against two unrelated targets, a ubiquitin ligase target KLHDC2 and the human voltage-gated sodium channel NaV1.7. For both targets, we discover hit compounds, including seven hits (14% hit rate) to KLHDC2 and four hits (44% hit rate) to NaV1.7, all with single digit micromolar binding affinities. Screening in both cases is completed in less than seven days. Finally, a high resolution X-ray crystallographic structure validates the predicted docking pose for the KLHDC2 ligand complex, demonstrating the effectiveness of our method in lead discovery. The authors in this work introduce RosettaVS, an AI-accelerated open-source drug discovery platform. They apply this tool to multi-billion compound libraries, where it was able to identify compounds that bind important targets KLHDC2 and NaV1.7.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Artificial intelligence for natural product drug discovery
    Mullowney, Michael W.
    Duncan, Katherine R.
    Elsayed, Somayah S.
    Garg, Neha
    van der Hooft, Justin J. J.
    Martin, Nathaniel I.
    Meijer, David
    Terlouw, Barbara R.
    Biermann, Friederike
    Blin, Kai
    Durairaj, Janani
    Gonzalez, Marina Gorostiola
    Helfrich, Eric J. N.
    Huber, Florian
    Leopold-Messer, Stefan
    Rajan, Kohulan
    de Rond, Tristan
    van Santen, Jeffrey A.
    Sorokina, Maria
    Balunas, Marcy J.
    Beniddir, Mehdi A.
    van Bergeijk, Doris A.
    Carroll, Laura M.
    Clark, Chase M.
    Clevert, Djork-Arne
    Dejong, Chris A.
    Du, Chao
    Ferrinho, Scarlet
    Grisoni, Francesca
    Hofstetter, Albert
    Jespers, Willem
    Kalinina, Olga V.
    Kautsar, Satria A.
    Kim, Hyunwoo
    Leao, Tiago F.
    Masschelein, Joleen
    Rees, Evan R.
    Reher, Raphael
    Reker, Daniel
    Schwaller, Philippe
    Segler, Marwin
    Skinnider, Michael A.
    Walker, Allison S.
    Willighagen, Egon L.
    Zdrazil, Barbara
    Ziemert, Nadine
    Goss, Rebecca J. M.
    Guyomard, Pierre
    Volkamer, Andrea
    Gerwick, William H.
    NATURE REVIEWS DRUG DISCOVERY, 2023, 22 (11) : 895 - 916
  • [32] Insights into artificial intelligence utilisation in drug discovery
    Abou Hajal, Abdallah
    Al Meslamani, Ahmad Z.
    JOURNAL OF MEDICAL ECONOMICS, 2024, 27 (01) : 304 - 308
  • [33] The Future Is Now: Artificial Intelligence in Drug Discovery
    Bajorath, Juergen
    Kearnes, Steven
    Walters, W. Patrick
    Georg, Gunda I.
    Wang, Shaomeng
    JOURNAL OF MEDICINAL CHEMISTRY, 2019, 62 (11) : 5249 - 5249
  • [34] Editorial: Artificial intelligence in drug discovery and development
    Wei, Leyi
    Zou, Quan
    Zeng, Xiangxiang
    METHODS, 2024, 226 : 133 - 137
  • [35] A special issue on artificial intelligence for drug discovery
    Rodrigues, Tiago
    BIOORGANIC & MEDICINAL CHEMISTRY, 2022, 70
  • [36] Artificial intelligence in the early stages of drug discovery
    Cavasotto, Claudio N.
    Di Filippo, Juan I.
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2021, 698
  • [37] ADVANCING DRUG DISCOVERY VIA ARTIFICIAL INTELLIGENCE
    Rachamsetty, Leela Sai Sree
    Panchumarthy, Ravi Sankar
    Gummadi, Haritha
    Valluri, Mounika
    Anitha, Alapati N. V. S. L.
    INTERNATIONAL JOURNAL OF LIFE SCIENCE AND PHARMA RESEARCH, 2020, : 699 - 702
  • [38] The Role of Artificial Intelligence in Drug Discovery and Development
    Ozaybi, Mazen Qassem Bohais
    Madkhali, Ahmed Nahari Mohammad
    Alhazmi, Mohammed Ali Mohammed
    Faqihi, Hesham Mohammad Ahmad
    Alanazi, Mshari Marzoq
    Siraj, Waheed Hadi Yahya
    Zalah, Ahmed Hussain Ahmed
    Khormi, Mohammed Mohsen Abdu
    Salem, Ali Mohammed Ahmed Al
    Mashragi, Talal Qasim Mosa
    Alotaibi, Ahmed Nawaf
    Naji, Ahmed Ali Mussa
    Bagal, Rehab Moaied Abdo
    Marwee, Hussain Ali Ahmed
    EGYPTIAN JOURNAL OF CHEMISTRY, 2024, 67 (13): : 1541 - 1547
  • [39] Thinking on the Use of Artificial Intelligence in Drug Discovery
    Wang, Yuxi
    Hu, Zelin
    Chang, Junbiao
    Yu, Bin
    JOURNAL OF MEDICINAL CHEMISTRY, 2025, 68 (05) : 4996 - 4999
  • [40] Artificial Intelligence: A Novel Approachfor Drug Discovery
    Diaz, Oscar
    Dalton, James A. R.
    Giraldo, Jesus
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2019, 40 (08) : 550 - 551