Artificial intelligence for natural product drug discovery

被引:55
|
作者
Mullowney, Michael W. [1 ]
Duncan, Katherine R. [2 ]
Elsayed, Somayah S. [3 ]
Garg, Neha [4 ]
van der Hooft, Justin J. J. [5 ,6 ]
Martin, Nathaniel I. [7 ]
Meijer, David [5 ]
Terlouw, Barbara R. [5 ]
Biermann, Friederike [5 ,8 ,9 ]
Blin, Kai [10 ]
Durairaj, Janani [11 ]
Gonzalez, Marina Gorostiola
Helfrich, Eric J. N. [8 ,9 ]
Huber, Florian [13 ]
Leopold-Messer, Stefan [14 ]
Rajan, Kohulan [15 ]
de Rond, Tristan [16 ]
van Santen, Jeffrey A. [17 ]
Sorokina, Maria [18 ,19 ]
Balunas, Marcy J. [20 ,21 ]
Beniddir, Mehdi A. [22 ]
van Bergeijk, Doris A. [3 ]
Carroll, Laura M. [23 ]
Clark, Chase M. [24 ]
Clevert, Djork-Arne [25 ]
Dejong, Chris A. [26 ]
Du, Chao [3 ]
Ferrinho, Scarlet [27 ]
Grisoni, Francesca [28 ,29 ]
Hofstetter, Albert [30 ]
Jespers, Willem [12 ]
Kalinina, Olga V. [31 ,32 ,33 ]
Kautsar, Satria A. [34 ]
Kim, Hyunwoo [35 ,36 ]
Leao, Tiago F. [37 ]
Masschelein, Joleen [38 ,39 ]
Rees, Evan R. [24 ]
Reher, Raphael [40 ,41 ]
Reker, Daniel [42 ,43 ]
Schwaller, Philippe [44 ]
Segler, Marwin [45 ]
Skinnider, Michael A. [26 ,46 ]
Walker, Allison S. [47 ,48 ]
Willighagen, Egon L. [49 ]
Zdrazil, Barbara [50 ]
Ziemert, Nadine [51 ]
Goss, Rebecca J. M. [27 ]
Guyomard, Pierre [52 ]
Volkamer, Andrea [33 ,53 ]
Gerwick, William H. [54 ]
机构
[1] Univ Chicago, Duchossois Family Inst, Chicago, IL USA
[2] Univ Strathclyde, Strathclyde Inst Pharm & Biomed Sci, Glasgow, Scotland
[3] Leiden Univ, Inst Biol, Dept Mol Biotechnol, Leiden, Netherlands
[4] Georgia Inst Technol, Ctr Microbial Dynam & Infect, Sch Chem & Biochem, Atlanta, GA 30332 USA
[5] Wageningen Univ, Bioinformat Grp, Wageningen, Netherlands
[6] Univ Johannesburg, Dept Biochem, Johannesburg, South Africa
[7] Leiden Univ, Inst Biol, Biol Chem Grp, Leiden, Netherlands
[8] Goethe Univ Frankfurt, Inst Mol Bio Sci, Frankfurt, Germany
[9] LOEWE Ctr Translat Biodivers Genom TBG, Frankfurt, Germany
[10] Tech Univ Denmark, Novo Nord Fdn Ctr Biosustainabil, Lyngby, Denmark
[11] Univ Basel, Biozentrum, Basel, Switzerland
[12] Leiden Acad Ctr Drug Res, Drug Discovery & Safety, Leiden, Netherlands
[13] Hsch Dusseldorf, Ctr Digitalizat & Digital, Dusseldorf, Germany
[14] Eidgenoss TH ETH Zurich, Inst Mikrobiol, Zurich, Switzerland
[15] Friedrich Schiller Univ Jena, Inst Inorgan & Analyt Chem, Jena, Germany
[16] Univ Auckland, Sch Chem Sci, Auckland, New Zealand
[17] Simon Fraser Univ, Dept Chem, Burnaby, BC, Canada
[18] Friedrich Schiller Univ, Inst Inorgan & Analyt Chem, Jena, Germany
[19] Bayer AG, Pharmaceut R&D, Berlin, Germany
[20] Univ Michigan, Dept Microbiol & Immunol, Ann Arbor, MI USA
[21] Univ Michigan, Dept Med Chem, Ann Arbor, MI USA
[22] Univ Paris Saclay, Equipe Chim Subst Nat, CNRS, BioCIS, Orsay, France
[23] EMBL, Struct & Computat Biol Unit, Heidelberg, Germany
[24] Univ Wisconsin Madison, Sch Pharm, Div Pharmaceut Sci, Madison, WI USA
[25] Pfizer, WRDM Machine Learning Res, Berlin, Germany
[26] Adapsyn Biosci, Hamilton, ON, Canada
[27] Univ St Andrews, Chem Dept, St Andrews, Scotland
[28] Eindhoven Univ Technol, Inst Complex Mol Syst, Dept Biomed Engn, Eindhoven, Netherlands
[29] UMC Utrecht, Alliance TU E, WUR, UU,Ctr Living Technol, Utrecht, Netherlands
[30] Swiss Fed Inst Technol, Lab Phys Chem, Zurich, Switzerland
[31] Helmholtz Ctr Infect Res HZI, Helmholtz Inst Pharmaceut Res Saarland HIPS, Saarbrucken, Germany
[32] Saarland Univ, Med Fac, Drug Bioinformat, Homburg, Germany
[33] Saarland Univ, Ctr Bioinformat, Saarbrucken, Germany
[34] Scripps Res, Dept Chem, Jupiter, FL USA
[35] Dongguk Univ Seoul, Coll Pharm, Goyang Si, South Korea
[36] Dongguk Univ Seoul, Integrated Res Inst Drug Dev, Goyang Si, South Korea
[37] Univ Sao Paulo, Ctr Nucl Energy Agr, Piracicaba, Brazil
[38] VIB KU Leuven, Ctr Microbiol, Heverlee, Belgium
[39] Katholieke Univ Leuven, Dept Biol, Heverlee, Belgium
[40] Univ Marburg, Inst Pharmaceut Biol & Biotechnol, Fachbereich Pharm, Marburg, Germany
[41] Martin Luther Univ Halle Wittenberg, Inst Pharm, Halle, Saale, Germany
[42] Duke Univ, Dept Biomed Engn, Durham, NC USA
[43] Duke Univ, Duke Microbiome Ctr, Durham, NC USA
[44] Ecole Polytech Fed Lausanne EPFL, Inst Sci & Ingn Chim, Lab Artificial Chem Intelligence, Lausanne, Switzerland
[45] Microsoft Res, Cambridge, England
[46] Univ British Columbia, Michael Smith Labs, Vancouver, BC, Canada
[47] Vanderbilt Univ, Dept Chem, Nashville, TN USA
[48] Vanderbilt Univ, Dept Biol Sci, Nashville, TN USA
[49] Maastricht Univ, Dept Bioinformat BiGCaT, NUTRIM, Maastricht, Netherlands
[50] European Bioinformat Inst EMBL EBI, Wellcome Genome Campus, Hinxton, Cambs, England
基金
新加坡国家研究基金会; 瑞士国家科学基金会; 比利时弗兰德研究基金会; 欧洲研究理事会; 英国生物技术与生命科学研究理事会; 美国国家科学基金会; 英国科研创新办公室;
关键词
MASS-SPECTROMETRY DATA; MACROMOLECULAR TARGETS; STRUCTURE ELUCIDATION; NONRIBOSOMAL PEPTIDE; LIGAND-BINDING; PREDICTION; DATABASE; SPECTRA; DESIGN; MODELS;
D O I
10.1038/s41573-023-00774-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Developments in computational omics technologies have provided new means to access the hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, artificial intelligence approaches such as machine learning have led to exciting developments in the computational drug design field, facilitating biological activity prediction and de novo drug design for molecular targets of interest. Here, we describe current and future synergies between these developments to effectively identify drug candidates from the plethora of molecules produced by nature. We also discuss how to address key challenges in realizing the potential of these synergies, such as the need for high-quality datasets to train deep learning algorithms and appropriate strategies for algorithm validation. Advances in computational omics technologies are enabling access to the hidden diversity of natural products, and artificial intelligence approaches are facilitating key steps in harnessing the therapeutic potential of such compounds, including biological activity prediction. This article discusses synergies between these fields to effectively identify drug candidates from the plethora of molecules produced by nature, and how to address the challenges in realizing the potential of these synergies.
引用
收藏
页码:895 / 916
页数:22
相关论文
共 50 条
  • [1] Artificial intelligence for natural product drug discovery
    Michael W. Mullowney
    Katherine R. Duncan
    Somayah S. Elsayed
    Neha Garg
    Justin J. J. van der Hooft
    Nathaniel I. Martin
    David Meijer
    Barbara R. Terlouw
    Friederike Biermann
    Kai Blin
    Janani Durairaj
    Marina Gorostiola González
    Eric J. N. Helfrich
    Florian Huber
    Stefan Leopold-Messer
    Kohulan Rajan
    Tristan de Rond
    Jeffrey A. van Santen
    Maria Sorokina
    Marcy J. Balunas
    Mehdi A. Beniddir
    Doris A. van Bergeijk
    Laura M. Carroll
    Chase M. Clark
    Djork-Arné Clevert
    Chris A. Dejong
    Chao Du
    Scarlet Ferrinho
    Francesca Grisoni
    Albert Hofstetter
    Willem Jespers
    Olga V. Kalinina
    Satria A. Kautsar
    Hyunwoo Kim
    Tiago F. Leao
    Joleen Masschelein
    Evan R. Rees
    Raphael Reher
    Daniel Reker
    Philippe Schwaller
    Marwin Segler
    Michael A. Skinnider
    Allison S. Walker
    Egon L. Willighagen
    Barbara Zdrazil
    Nadine Ziemert
    Rebecca J. M. Goss
    Pierre Guyomard
    Andrea Volkamer
    William H. Gerwick
    [J]. Nature Reviews Drug Discovery, 2023, 22 : 895 - 916
  • [2] Natural product drug discovery in the artificial intelligence era
    Saldivar-Gonzalez, F. I.
    Aldas-Bulos, V. D.
    Medina-Franco, J. L.
    Plisson, F.
    [J]. CHEMICAL SCIENCE, 2022, 13 (06) : 1526 - 1546
  • [3] Artificial intelligence in microbial natural product drug discovery: current and emerging role
    Sahayasheela, Vinodh J.
    Lankadasari, Manendra B.
    Dan, Vipin Mohan
    Dastager, Syed G.
    Pandian, Ganesh N.
    Sugiyama, Hiroshi
    [J]. NATURAL PRODUCT REPORTS, 2022, 39 (12) : 2215 - 2230
  • [4] Impact of Artificial Intelligence (AI) on Drug Discovery and Product Development
    Narayanan, Ravi Ram
    Durga, Narayanamoorthy
    Nagalakshmi, Sethuraman
    [J]. INDIAN JOURNAL OF PHARMACEUTICAL EDUCATION AND RESEARCH, 2022, 56 (03) : S387 - S397
  • [5] Artifical intelligence: a virtual chemist for natural product drug discovery
    Arora, Shefali
    Chettri, Sukanya
    Percha, Versha
    Kumar, Deepak
    Latwal, Mamta
    [J]. JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2024, 42 (07): : 3826 - 3835
  • [6] Artificial Intelligence for Drug Discovery
    Tang, Jian
    Wang, Fei
    Cheng, Feixiong
    [J]. KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 4074 - 4075
  • [7] Evaluating the effect of artificial intelligence on pharmaceutical product and drug discovery in China
    Sampene, Agyemang Kwasi
    Nyirenda, Fatuma
    [J]. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES, 2024, 10 (01)
  • [8] Evaluating the effect of artificial intelligence on pharmaceutical product and drug discovery in China
    Agyemang Kwasi Sampene
    Fatuma Nyirenda
    [J]. Future Journal of Pharmaceutical Sciences, 10
  • [9] Artificial intelligence in drug discovery
    Sellwood, Matthew A.
    Ahmed, Mohamed
    Segler, Marwin H. S.
    Brown, Nathan
    [J]. FUTURE MEDICINAL CHEMISTRY, 2018, 10 (17) : 2025 - 2028
  • [10] Adding Artificial Intelligence to Drug Discovery
    May, Mike
    [J]. Genetic Engineering and Biotechnology News, 2019, 39 (04): : 26 - 29