Local unitary equivalence of arbitrary-dimensional multipartite quantum states

被引:0
|
作者
Zhou, Qing [1 ,2 ,3 ]
Zhen, Yi-Zheng [1 ,2 ,3 ]
Xu, Xin-Yu [1 ,2 ,3 ]
Zhao, Shuai [1 ,2 ,3 ,4 ]
Yang, Wen -Li [5 ]
Fei, Shao-Ming [6 ]
Li, Li [1 ,2 ,3 ,7 ]
Liu, Nai-Le [1 ,2 ,3 ,7 ]
Chen, Kai [1 ,2 ,3 ,7 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
[4] Hangzhou Dianzi Univ, Sch Cyberspace, Hangzhou 310018, Peoples R China
[5] Northwest Univ, Inst Modern Phys, Xian 710069, Peoples R China
[6] Capital Normal Univ, Sch Math Sci, Beijing, Peoples R China
[7] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
关键词
INVARIANTS;
D O I
10.1103/PhysRevA.109.022427
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Local unitary equivalence is an important ingredient for quantifying and classifying entanglement. Verifying whether or not two quantum states are local unitary equivalent is a crucial problem, where only the case of multipartite pure states is solved. For mixed states, however, the verification of local unitary equivalence is still a challenging problem. In this paper, based on the coefficient matrices of generalized Bloch representations of quantum states, we find a variety of local unitary invariants for arbitrary-dimensional bipartite quantum states. These invariants are operational and can be used as necessary conditions for verifying the local unitary equivalence of two quantum states. Furthermore, we extend the construction to the arbitrary-dimensional multipartite case. We finally apply these invariants to estimate concurrence, a vital entanglement measure, showing the practicability of local unitary invariants in characterizing entanglement.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Local Unitary Invariants for Multipartite States
    Ting-Gui Zhang
    Ming-Jing Zhao
    Xianqing Li-Jost
    Shao-Ming Fei
    International Journal of Theoretical Physics, 2013, 52 : 3020 - 3025
  • [22] Local Unitary Invariants for Multipartite States
    Zhang, Ting-Gui
    Zhao, Ming-Jing
    Li-Jost, Xianqing
    Fei, Shao-Ming
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (09) : 3020 - 3025
  • [23] Matrix Tensor Product Approach to the Equivalence of Multipartite States under Local Unitary Transformations
    GAO Xiu-Hong~1 S.Alberverio~2 FEI Shao-Ming~(1
    Communications in Theoretical Physics, 2006, 45 (02) : 267 - 270
  • [24] Matrix tensor product approach to the equivalence of multipartite states under local unitary transformations
    Gao, XH
    Alberverio, S
    Fei, SM
    Wang, ZX
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (02) : 267 - 270
  • [25] Local Unitary Equivalence of Quantum States Based on the Tensor Decompositions of Unitary Matrices
    Wang, Jing
    Liu, Xiaoqi
    Xu, Li
    Li, Ming
    Li, Lei
    Shen, Shuqian
    ENTROPY, 2023, 25 (08)
  • [26] Equivalence of tripartite quantum states under local unitary transformations
    Albeverio, S
    Cattaneo, L
    Fei, SM
    Wang, XH
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2005, 3 (04) : 603 - 609
  • [27] Local Unitary Invariants for Multipartite Quantum Systems
    王静
    李明
    费少明
    李先清
    Communications in Theoretical Physics, 2014, 62 (11) : 673 - 676
  • [28] Local unitary invariants for multipartite quantum systems
    Vrana, Peter
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (11)
  • [29] Multipartite states under local unitary transformations
    Albeverio, S
    Cattaneo, L
    Fei, SM
    Wang, XH
    REPORTS ON MATHEMATICAL PHYSICS, 2005, 56 (03) : 341 - 350
  • [30] Local Unitary Invariants for Multipartite Quantum Systems
    Wang Jing
    Li Ming
    Fei Shao-Ming
    Xian-Qing Li-Jost
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 62 (05) : 673 - 676