Local unitary equivalence of arbitrary-dimensional multipartite quantum states

被引:0
|
作者
Zhou, Qing [1 ,2 ,3 ]
Zhen, Yi-Zheng [1 ,2 ,3 ]
Xu, Xin-Yu [1 ,2 ,3 ]
Zhao, Shuai [1 ,2 ,3 ,4 ]
Yang, Wen -Li [5 ]
Fei, Shao-Ming [6 ]
Li, Li [1 ,2 ,3 ,7 ]
Liu, Nai-Le [1 ,2 ,3 ,7 ]
Chen, Kai [1 ,2 ,3 ,7 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
[4] Hangzhou Dianzi Univ, Sch Cyberspace, Hangzhou 310018, Peoples R China
[5] Northwest Univ, Inst Modern Phys, Xian 710069, Peoples R China
[6] Capital Normal Univ, Sch Math Sci, Beijing, Peoples R China
[7] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
关键词
INVARIANTS;
D O I
10.1103/PhysRevA.109.022427
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Local unitary equivalence is an important ingredient for quantifying and classifying entanglement. Verifying whether or not two quantum states are local unitary equivalent is a crucial problem, where only the case of multipartite pure states is solved. For mixed states, however, the verification of local unitary equivalence is still a challenging problem. In this paper, based on the coefficient matrices of generalized Bloch representations of quantum states, we find a variety of local unitary invariants for arbitrary-dimensional bipartite quantum states. These invariants are operational and can be used as necessary conditions for verifying the local unitary equivalence of two quantum states. Furthermore, we extend the construction to the arbitrary-dimensional multipartite case. We finally apply these invariants to estimate concurrence, a vital entanglement measure, showing the practicability of local unitary invariants in characterizing entanglement.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Tighter Weighted Polygamy Inequalities of Multipartite Entanglement in Arbitrary-Dimensional Quantum Systems
    Chen, Bin
    Yang, Long-Mei
    Fei, Shao-Ming
    Wang, Zhi-Xi
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (03) : 1001 - 1007
  • [12] Tighter Weighted Polygamy Inequalities of Multipartite Entanglement in Arbitrary-Dimensional Quantum Systems
    Bin Chen
    Long-Mei Yang
    Shao-Ming Fei
    Zhi-Xi Wang
    International Journal of Theoretical Physics, 2019, 58 : 1001 - 1007
  • [13] Local unitary equivalence of quantum states and simultaneous orthogonal equivalence
    Jing, Naihuan
    Yang, Min
    Zhao, Hui
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (06)
  • [14] Lower bound on concurrence for arbitrary-dimensional tripartite quantum states
    Wei Chen
    Shao-Ming Fei
    Zhu-Jun Zheng
    Quantum Information Processing, 2016, 15 : 3761 - 3771
  • [15] Lower bound on concurrence for arbitrary-dimensional tripartite quantum states
    Chen, Wei
    Fei, Shao-Ming
    Zheng, Zhu-Jun
    QUANTUM INFORMATION PROCESSING, 2016, 15 (09) : 3761 - 3771
  • [16] Quantifying entanglement of arbitrary-dimensional multipartite pure states in terms of the singular values of coefficient matrices
    Li, Hui
    Wang, Shuhao
    Cui, Jianlian
    Long, Guilu
    PHYSICAL REVIEW A, 2013, 87 (04):
  • [17] Classification of arbitrary-dimensional multipartite pure states under stochastic local operations and classical communication using the rank of coefficient matrix
    Wang, Shuhao
    Lu, Yao
    Gao, Ming
    Cui, Jianlian
    Li, Junlin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (10)
  • [18] Local unitary equivalence of multiqubit mixed quantum states
    Li, Ming
    Zhang, Tinggui
    Fei, Shao-Ming
    Li-Jost, Xianqing
    Jing, Naihuan
    PHYSICAL REVIEW A, 2014, 89 (06):
  • [19] Equivalence of quantum states under local unitary transformations
    Fei, SM
    Jing, NH
    PHYSICS LETTERS A, 2005, 342 (1-2) : 77 - 81
  • [20] Lower bound on concurrence and distillation for arbitrary-dimensional bipartite quantum states
    Zhao, Ming-Jing
    Zhu, Xue-Na
    Fei, Shao-Ming
    Li-Jost, Xianqing
    PHYSICAL REVIEW A, 2011, 84 (06):