Local unitary equivalence of arbitrary-dimensional multipartite quantum states

被引:0
|
作者
Zhou, Qing [1 ,2 ,3 ]
Zhen, Yi-Zheng [1 ,2 ,3 ]
Xu, Xin-Yu [1 ,2 ,3 ]
Zhao, Shuai [1 ,2 ,3 ,4 ]
Yang, Wen -Li [5 ]
Fei, Shao-Ming [6 ]
Li, Li [1 ,2 ,3 ,7 ]
Liu, Nai-Le [1 ,2 ,3 ,7 ]
Chen, Kai [1 ,2 ,3 ,7 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
[4] Hangzhou Dianzi Univ, Sch Cyberspace, Hangzhou 310018, Peoples R China
[5] Northwest Univ, Inst Modern Phys, Xian 710069, Peoples R China
[6] Capital Normal Univ, Sch Math Sci, Beijing, Peoples R China
[7] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
关键词
INVARIANTS;
D O I
10.1103/PhysRevA.109.022427
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Local unitary equivalence is an important ingredient for quantifying and classifying entanglement. Verifying whether or not two quantum states are local unitary equivalent is a crucial problem, where only the case of multipartite pure states is solved. For mixed states, however, the verification of local unitary equivalence is still a challenging problem. In this paper, based on the coefficient matrices of generalized Bloch representations of quantum states, we find a variety of local unitary invariants for arbitrary-dimensional bipartite quantum states. These invariants are operational and can be used as necessary conditions for verifying the local unitary equivalence of two quantum states. Furthermore, we extend the construction to the arbitrary-dimensional multipartite case. We finally apply these invariants to estimate concurrence, a vital entanglement measure, showing the practicability of local unitary invariants in characterizing entanglement.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantum separability criteria for arbitrary-dimensional multipartite states
    Li, Ming
    Wang, Jing
    Fei, Shao-Ming
    Li-Jost, Xianqing
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [2] On Local Unitary Equivalence of Multipartite Quantum States
    Yanjun Chu
    Keke Zhang
    Mengli Liu
    International Journal of Theoretical Physics, 64 (3)
  • [3] Local unitary equivalence of arbitrary dimensional bipartite quantum states
    Zhou, Chunqin
    Zhang, Ting-Gui
    Fei, Shao-Ming
    Jing, Naihuan
    Li-Jost, Xianqing
    PHYSICAL REVIEW A, 2012, 86 (01):
  • [4] Classification of arbitrary multipartite entangled states under local unitary equivalence
    Li, Jun-Li
    Qiao, Cong-Feng
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (07)
  • [5] Local Unitary Classification of Arbitrary Dimensional Multipartite Pure States
    Liu, Bin
    Li, Jun-Li
    Li, Xikun
    Qiao, Cong-Feng
    PHYSICAL REVIEW LETTERS, 2012, 108 (05)
  • [7] The Local Unitary Equivalence of Multipartite Pure States
    Wang, Yan-Ling
    Li, Mao-Sheng
    Fei, Shao-Ming
    Zheng, Zhu-Jun
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (02) : 425 - 434
  • [8] The Local Unitary Equivalence of Multipartite Pure States
    Yan-Ling Wang
    Mao-Sheng Li
    Shao-Ming Fei
    Zhu-Jun Zheng
    International Journal of Theoretical Physics, 2015, 54 : 425 - 434
  • [9] Criterion of local unitary equivalence for multipartite states
    Zhang, Ting-Gui
    Zhao, Ming-Jing
    Li, Ming
    Fei, Shao-Ming
    Li-Jost, Xianqing
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [10] Local unitary equivalence and entanglement of multipartite pure states
    Kraus, B.
    PHYSICAL REVIEW A, 2010, 82 (03):