Recent advances in data collection for Cryo-EM methods

被引:5
|
作者
Cheng, Anchi [1 ]
Yu, Yue [1 ]
机构
[1] Zuckerberg Inst Adv Biol Imaging CZ Im Inst, 3400 Bridge Pkwy, Redwood City, CA 94065 USA
关键词
TOMOGRAPHY;
D O I
10.1016/j.sbi.2024.102795
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Methods of transmission electron microscopy (TEM) are typically used to resolve structures of vitrified biological specimens using both single particle analysis (SPA) and tomographic methods and use both conventional as well as scanning transmission modes of data collection. Automation of data collection for each method has been developed to different levels of convenience for the users. Automation of methods using the conventional TEM mode has progressed the furthest. Beam-image shift strategies first used in data collection for SPA were shown to be equally valuable for cryo-electron tomography (cryo-ET). Machine learning methods have been applied for target selection and for planning optimal paths of data collection for SPA. These methods also enabled automated screening. Apertures matching the square shape of cameras have been recently described. Some progress has also been made in the automation of cryo applications of scanning TEM, promising an increase of throughput and potential for further improvement.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Advances in Modern Information Technologies for Data Analysis in CRYO-EM and XFEL Experiments
    S. A. Bobkov
    A. B. Teslyuk
    T. N. Baymukhametov
    E. B. Pichkur
    Yu. M. Chesnokov
    D. Assalauova
    A. A. Poyda
    A. M. Novikov
    S. I. Zolotarev
    K. A. Ikonnikova
    V. E. Velikhov
    I. A. Vartanyants
    A. L. Vasiliev
    V. A. Ilyin
    Crystallography Reports, 2020, 65 : 1081 - 1092
  • [22] Advances in Modern Information Technologies for Data Analysis in CRYO-EM and XFEL Experiments
    Bobkov, S. A.
    Teslyuk, A. B.
    Baymukhametov, T. N.
    Pichkur, E. B.
    Chesnokov, Yu M.
    Assalauova, D.
    Poyda, A. A.
    Novikov, A. M.
    Zolotarev, S., I
    Ikonnikova, K. A.
    Velikhov, V. E.
    Vartanyants, I. A.
    Vasiliev, A. L.
    Ilyin, V. A.
    CRYSTALLOGRAPHY REPORTS, 2020, 65 (06) : 1081 - 1092
  • [23] Advances in modelling continuous heterogeneity from single particle cryo-EM data
    Punjani, Ali
    Fleet, David
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : A235 - A235
  • [24] Editorial: Methods in structural biology: Cryo-EM
    Sokolova, Olga S.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [25] Advances in Structural Virology via Cryo-EM in 2022
    Schoehn, Guy
    Chenavier, Florian
    Crepin, Thibaut
    VIRUSES-BASEL, 2023, 15 (06):
  • [26] Single-Particle Cryo-EM Data Collection with Stage Tilt using Leginon
    Aiyer, Sriram
    Strutzenberg, Timothy S.
    Bowman, Marianne E.
    Noel, Joseph P.
    Lyumkis, Dmitry
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022, (185):
  • [27] Persistent topology for cryo-EM data analysis
    Xia, Kelin
    Wei, Guo-Wei
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2015, 31 (08) : 1 - 29
  • [28] Evolving data standards for cryo-EM structures
    Lawson, Catherine L.
    Berman, Helen M.
    Chiu, Wah
    STRUCTURAL DYNAMICS-US, 2020, 7 (01):
  • [29] Coma-corrected rapid single-particle cryo-EM data collection on the CRYO ARM 300
    Efremov, Rouslan G.
    Stroobants, Annelore
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2021, 77 : 555 - 564
  • [30] A snapshot of cryo-EM
    Skiniotis, Georgios
    PROTEIN SCIENCE, 2017, 26 (01) : 5 - 7