TabHLH27 orchestrates root growth and drought tolerance to enhance water use efficiency in wheat

被引:1
|
作者
Wang, Dongzhi [1 ]
Zhang, Xiuxiu [1 ]
Cao, Yuan [1 ,2 ]
Batool, Aamana [2 ,3 ]
Xu, Yongxin [1 ,2 ]
Qiao, Yunzhou [3 ]
Li, Yongpeng [3 ]
Wang, Hao [1 ,2 ]
Lin, Xuelei [1 ]
Bie, Xiaomin [4 ]
Zhang, Xiansheng [4 ]
Jing, Ruilian [5 ]
Dong, Baodi [2 ,3 ]
Tong, Yiping [1 ]
Teng, Wan [1 ]
Liu, Xigang [6 ]
Xiao, Jun [1 ,2 ,7 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, Key Lab Plant Cell & Chromosome Engn, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Ctr Agr Resources Res, Inst Genet & Dev Biol, Shijiazhuang 050022, Peoples R China
[4] Shandong Agr Univ, Coll Life Sci, Key Lab Crop Biol, Tai An 271018, Peoples R China
[5] Chinese Acad Agr Sci, Inst Crop Sci, State Key Lab Crop Gene Resources & Breeding, Beijing 100081, Peoples R China
[6] Hebei Normal Univ, Coll Life Sci, Hebei Res Ctr Basic Discipline Cell Biol, Hebei Collaborat Innovat Ctr Cell Signaling & Envi, Shijiazhuang 050024, Peoples R China
[7] JIC CAS, Ctr Excellence Plant & Microbial Sci CEPAMS, Beijing 100101, Peoples R China
基金
北京市自然科学基金;
关键词
drought tolerance; GWAS; root growth; wheat; WUE; TRANSCRIPTION FACTOR; PHOSPHATE-STARVATION; SYSTEM ARCHITECTURE; RICE; YIELD; ASSOCIATION; TRAITS; STRESS; MAIZE; RESPONSES;
D O I
10.1111/jipb.13670
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions. Amid water scarcity, plants activate drought response signaling, yet the delicate balance between drought tolerance and development remains unclear. Through genome-wide association studies and transcriptome profiling, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor (TF), TabHLH27-A1, as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat. TabHLH27-A1/B1/D1 knock-out reduced wheat drought tolerance, yield, and water use efficiency (WUE). TabHLH27-A1 exhibited rapid induction with polyethylene glycol (PEG) treatment, gradually declining over days. It activated stress response genes such as TaCBL8-B1 and TaCPI2-A1 while inhibiting root growth genes like TaSH15-B1 and TaWRKY70-B1 under short-term PEG stimulus. The distinct transcriptional regulation of TabHLH27-A1 involved diverse interacting factors such as TaABI3-D1 and TabZIP62-D1. Natural variations of TabHLH27-A1 influence its transcriptional responses to drought stress, with TabHLH27-A1Hap-II associated with stronger drought tolerance, larger root system, more spikelets, and higher WUE in wheat. Significantly, the excellent TabHLH27-A1Hap-II was selected during the breeding process in China, and introgression of TabHLH27-A1Hap-II allele improved drought tolerance and grain yield, especially under water-limited conditions. Our study highlights TabHLH27-A1's role in balancing root growth and drought tolerance, providing a genetic manipulation locus for enhancing WUE in wheat.
引用
收藏
页码:1295 / 1312
页数:18
相关论文
共 50 条
  • [31] Use of net photosynthesis and water-use-efficiency in breeding wheat for drought resistance
    Malik, TA
    Wright, D
    PAKISTAN JOURNAL OF BOTANY, 1997, 29 (02) : 337 - 346
  • [32] Root Proteomics Reveals the Effects of Wood Vinegar on Wheat Growth and Subsequent Tolerance to Drought Stress
    Wang, Yuying
    Qiu, Ling
    Song, Qilu
    Wang, Shuping
    Wang, Yajun
    Ge, Yihong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (04)
  • [33] Response of growth and water use efficiency of spring wheat to whole season CO2 enrichment and drought
    Wu, DX
    Wang, GX
    Bai, YF
    Liao, HX
    Ren, HX
    ACTA BOTANICA SINICA, 2002, 44 (12): : 1477 - 1483
  • [34] Effect of Simulating Drought in Various Phenophases on the Water Use Efficiency of Winter Wheat
    Varga, B.
    Vida, G.
    Varga-Laszlo, E.
    Bencze, S.
    Veisz, O.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2015, 201 (01) : 1 - 9
  • [35] The role of root size and root efficiency in grain production, and water-and nitrogen-use efficiency in wheat
    Yan, Minfei
    Lian, Huida
    Zhang, Cong
    Chen, Yinglong
    Cai, Huanjie
    Zhang, Suiqi
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2023, 103 (14) : 7083 - 7094
  • [36] Genotypic variation in soil water use and root distribution and their implications for drought tolerance in chickpea
    Purushothaman, Ramamoorthy
    Krishnamurthy, Lakshmanan
    Upadhyaya, Hari D.
    Vadez, Vincent
    Varshney, Rajeev K.
    FUNCTIONAL PLANT BIOLOGY, 2017, 44 (02) : 235 - 252
  • [37] Root signals affect water use efficiency and shoot growth
    During, H
    Loveys, BR
    Dry, PR
    FIRST ISHS WORKSHOP ON STRATEGIES TO OPTIMIZE WINE GRAPE QUALITY, 1996, (427): : 1 - 13
  • [38] Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance
    Leucci, Maria Rosaria
    Lenucci, Marcello Salvatore
    Piro, Gabriella
    Dalessandro, Giuseppe
    JOURNAL OF PLANT PHYSIOLOGY, 2008, 165 (11) : 1168 - 1180
  • [39] Root efficiency and water use regulation relating to rooting depth of winter wheat
    Li, Haotian
    Li, Lu
    Liu, Na
    Chen, Suying
    Shao, Liwei
    Sekiya, Nobuhito
    Zhang, Xiying
    AGRICULTURAL WATER MANAGEMENT, 2022, 269
  • [40] Effects of root pruning on competitive ability and water use efficiency in winter wheat
    Ma, Shou-Chen
    Xu, Bing-Cheng
    Li, Feng-Min
    Liu, Wen-Zhao
    Huang, Zhan-Bin
    FIELD CROPS RESEARCH, 2008, 105 (1-2) : 56 - 63